首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1464篇
  免费   86篇
  国内免费   124篇
  2024年   6篇
  2023年   20篇
  2022年   25篇
  2021年   30篇
  2020年   41篇
  2019年   38篇
  2018年   39篇
  2017年   50篇
  2016年   44篇
  2015年   39篇
  2014年   59篇
  2013年   85篇
  2012年   33篇
  2011年   78篇
  2010年   69篇
  2009年   96篇
  2008年   79篇
  2007年   104篇
  2006年   78篇
  2005年   66篇
  2004年   76篇
  2003年   42篇
  2002年   41篇
  2001年   40篇
  2000年   30篇
  1999年   38篇
  1998年   29篇
  1997年   28篇
  1996年   31篇
  1995年   19篇
  1994年   25篇
  1993年   17篇
  1992年   17篇
  1991年   18篇
  1990年   18篇
  1989年   15篇
  1988年   9篇
  1987年   12篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有1674条查询结果,搜索用时 15 毫秒
111.
An integro-differential equation is proposed to model a general relapse phenomenon in infectious diseases including herpes. The basic reproduction number R(0) for the model is identified and the threshold property of R(0) established. For the case of a constant relapse period (giving a delay differential equation), this is achieved by conducting a linear stability analysis of the model, and employing the Lyapunov-Razumikhin technique and monotone dynamical systems theory for global results. Numerical simulations, with parameters relevant for herpes, are presented to complement the theoretical results, and no evidence of sustained oscillatory solutions is found.  相似文献   
112.
We analyze the asymptotic behaviour of solutions of the abstract differential equation u'(t)=Au(t)-F(u(t))u(t)+f. Our results are applicable to models of structured population dynamics in which the state space consists of population densities with respect to the structure variables. In the equation the linear term A corresponds to internal processes independent of crowding, the nonlinear logistic term F corresponds to the influence of crowding, and the source term f corresponds to external effects. We analyze three separate cases and show that for each case the solutions stabilize in a way governed by the linear term. We illustrate the results with examples of models of structured population dynamics -- a model for the proliferation of cell lines with telomere shortening, a model of proliferating and quiescent cell populations, and a model for the growth of tumour cord cell populations.  相似文献   
113.
pK(a) calculations based on the Poisson-Boltzmann equation have been widely used to study proteins and, more recently, DNA. However, much less attention has been paid to the calculation of pK(a) shifts in RNA. There is accumulating evidence that protonated nucleotides can stabilize RNA structure and participate in enzyme catalysis within ribozymes. Here, we calculate the pK(a) shifts of nucleotides in RNA structures using numerical solutions to the Poisson-Boltzmann equation. We find that significant shifts are predicted for several nucleotides in two catalytic RNAs, the hairpin ribozyme and the hepatitis delta virus ribozyme, and that the shifts are likely to be related to their functions. We explore how different structural environments shift the pK(a)s of nucleotides from their solution values. RNA structures appear to use two basic strategies to shift pK(a)s: (a) the formation of compact structural motifs with structurally-conserved, electrostatic interactions; and (b) the arrangement of the phosphodiester backbone to focus negative electrostatic potential in specific regions.  相似文献   
114.
We consider a system composed of a tubular sheet of early tumor cells, occupying the surface of a structure existing in the organism. We assume that the cells have a potential for proliferation in response to a growth factor. This model can be thought of as representing an early stage (pre-in situ) of tumor evolution. A biomedical example of such process might be the atypical adenomatous hyperplasia in the lung. Destabilization of the equilibrium in such system represents initial invasion of cancer. We are looking for a transition from a slightly perturbed equilibrium state to uncontrolled and irregular growth. We examine a mathematical model of a population of cells distributed over a linear or tubular structure. Growth of cells is regulated by a growth factor, which can diffuse over the structure. Aside from this, production of cells and of the growth factor is governed by a pair of ordinary differential equations. Equation for the cell number follows from an accepted model of cell cycle. Equation for the bounded receptor particle number follows from a time-continuous Markov process. We demonstrate existence of the solutions of the complete model, using the method of invariant rectangles. We find conditions under which diffusion causes destabilization of the spatially homogeneous steady state, leading to exponential growth and apparently chaotic spatial patterns, following a period of almost constancy. This phenomenon may serve as a mathematical explanation of "unexpected" rapid growth and invasion of temporarily stable structures composed of cancer cells.  相似文献   
115.
116.
We analyse an age-structured model of telomere loss in a proliferating cell population. The cell population is divided into telomere classes, which shorten each round of division. The model consists of a nonlinear system of partial differential equations for the telomere classes. We prove that if the highest telomere class is exempted from mortality, then all the classes stabilize to a nontrivial equilibrium dependent on the initial state of cells in the highest telomere class.  相似文献   
117.
We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c>hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak-selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g=h=l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix.  相似文献   
118.
Quorum sensing is a bacterial mechanism used to synchronize the coordinated response of a microbial population. Because quorum sensing in Gram-negative bacteria depends on release and detection of a diffusible signaling molecule (autoinducer) among a multicellular group, it is considered a simple form of cell-cell communication for the purposes of mathematical analysis. Stochastic equation systems have provided a common approach to model biochemical or biophysical processes. Recently, the effect of noise to synchronize a specific homogeneous quorum sensing network was successfully modeled using a stochastic equation system with fixed parameters. The question remains of how to model quorum sensing networks in a general setting. To address this question, we first set a stochastic equation system as a general model for a heterogeneous quorum sensing network. Then, using two relevant biophysical characteristics of Gram-negative bacteria (the permeability of the cell membrane to the autoinducer and the symmetry of autoinducer diffusion) we construct the solution of the stochastic equation system at an abstract level. The solution indicates that stable synchronization of a quorum sensing network is robustly induced by an environment with a heterogenous distribution of extracellular and intracellular noise. The synchronization is independent of the initial state of the system and is solely the result of the connectivity of the cell network established through the effects of extracellular noise.  相似文献   
119.
In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.  相似文献   
120.
In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号