首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5670篇
  免费   557篇
  国内免费   594篇
  2024年   11篇
  2023年   139篇
  2022年   193篇
  2021年   256篇
  2020年   284篇
  2019年   305篇
  2018年   254篇
  2017年   242篇
  2016年   266篇
  2015年   260篇
  2014年   388篇
  2013年   469篇
  2012年   251篇
  2011年   324篇
  2010年   219篇
  2009年   349篇
  2008年   290篇
  2007年   285篇
  2006年   245篇
  2005年   274篇
  2004年   217篇
  2003年   212篇
  2002年   185篇
  2001年   117篇
  2000年   91篇
  1999年   86篇
  1998年   70篇
  1997年   48篇
  1996年   51篇
  1995年   48篇
  1994年   58篇
  1993年   32篇
  1992年   40篇
  1991年   19篇
  1990年   15篇
  1989年   16篇
  1988年   10篇
  1987年   21篇
  1986年   16篇
  1985年   11篇
  1984年   34篇
  1983年   31篇
  1982年   17篇
  1981年   26篇
  1980年   13篇
  1979年   22篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
排序方式: 共有6821条查询结果,搜索用时 234 毫秒
141.
The myometrium is the smooth muscle layer of the uterus that generates the contractions that drive processes such as menstruation and childbirth. Aberrant contractions of the myometrium can result in preterm birth, insufficient progression of labor, or other difficulties that can lead to maternal or fetal complications or even death. To investigate the underlying mechanisms of these conditions, the most common model systems have conventionally been animal models and human tissue strips, which have limitations mostly related to relevance and scalability, respectively. Myometrial smooth muscle cells have also been isolated from patient biopsies and cultured in vitro as a more controlled experimental system. However, in vitro approaches have focused primarily on measuring the effects of biochemical stimuli and neglected biomechanical stimuli, despite the extensive evidence indicating that remodeling of tissue rigidity or excessive strain is associated with uterine disorders. In this review, we first describe the existing approaches for modeling human myometrium with animal models and human tissue strips and compare their advantages and disadvantages. Next, we introduce existing in vitro techniques and assays for assessing contractility and summarize their applications in elucidating the role of biochemical or biomechanical stimuli on human myometrium. Finally, we conclude by proposing the translation of “organ on chip” approaches to myometrial smooth muscle cells as new paradigms for establishing their fundamental mechanobiology and to serve as next-generation platforms for drug development.  相似文献   
142.
全球传粉昆虫多样性正在下降, 如何保障农林生态系统传粉功能是当前研究的热点。理论上说, 传粉功能不仅与生态系统的传粉昆虫多样性相关, 还与生态系统的调节能力有关。近年来, 学者们逐渐认识到授粉生态弹性对传粉功能的影响。本文在回顾已有研究的基础之上, 总结传粉昆虫授粉生态弹性的内涵, 厘清授粉生态弹性与工程弹性、稳定性和抗性的异同。目前, 学者对授粉生态弹性形成机制开展广泛探讨, 提出功能冗余假说、密度补偿假说、响应多样性假说、连接周转假说和跨尺度弹性假说, 但这5个假说间的关系仍不清楚, 存在一词多义、词意混淆等现象。我们依次阐述功能冗余假说、密度补偿假说、响应多样性假说、连接周转假说和跨尺度弹性假说, 介绍不同假说中授粉生态弹性形成过程、研究热点和发展动态。通过解析授粉生态弹性的形成机制可知, 5个假说在内涵上存在紧密联系, 它们从不同空间尺度和研究对象下解释传粉昆虫授粉生态弹性的形成机制。未来授粉生态弹性研究将整合传粉昆虫群落动态和传粉功能动态的量化方法, 通过实验验证5个假说的合理性, 并揭示不同假说间的联系, 由此阐明授粉生态弹性的发生条件、形成阈值和动态规律。随着研究的深入, 授粉生态弹性理论有望用于指导农林生态系统传粉功能的经营管理。  相似文献   
143.
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L−1 l-lysine from mannitol at a yield of 0.26 mol mol−1 and a maximum productivity of 2.1 g L−1 h−1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol−1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol−1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.  相似文献   
144.
145.
In order to make renewable fuels and chemicals from microbes, new methods are required to engineer microbes more intelligently. Computational approaches, to engineer strains for enhanced chemical production typically rely on detailed mechanistic models (e.g., kinetic/stoichiometric models of metabolism)—requiring many experimental datasets for their parameterization—while experimental methods may require screening large mutant libraries to explore the design space for the few mutants with desired behaviors. To address these limitations, we developed an active and machine learning approach (ActiveOpt) to intelligently guide experiments to arrive at an optimal phenotype with minimal measured datasets. ActiveOpt was applied to two separate case studies to evaluate its potential to increase valine yields and neurosporene productivity in Escherichia coli. In both the cases, ActiveOpt identified the best performing strain in fewer experiments than the case studies used. This work demonstrates that machine and active learning approaches have the potential to greatly facilitate metabolic engineering efforts to rapidly achieve its objectives.  相似文献   
146.
The preparatory motion of a defensive motion in contact sport such as basketball should be small and involve landing on both feet for strict time and motion constraints. We thus proposed the movement creating a unweighted state. Ten basketball players performed a choice reaction sidestepping task with and without the voluntary, continuous vertical fluctuation movement. The results indicated that the preparatory movement shortened the time of their sidestep initiation (301 vs. 314 ms, p = 0.011) and reaching performance (883 vs. 910 ms, p = 0.018) but did not increase their peak ground reaction force or movement velocity. The mechanism of the improvement was estimated to be the following: in the preparation phase, the vertical body fluctuation created the force fluctuation; after the direction signal, the unweighted state can shorten the time required to initiate the sidestepping (unweighted: 279 ms; weighted: 322 ms, p = 0.002); around the initiation phase, the dropping down of the body and weighted state can contribute to the reaching performance. We conducted additional experiment investigating muscle–tendon-complex dynamics and muscle activity using ultrasound device and electromyography. The result suggests that the building up of active state of muscle might explain the improvement of sidestepping performance.  相似文献   
147.
Abstract

We used a rat model to decellularize and seed alveolar cells on a three-dimensional lung scaffold to preserve alveolar microarchitecture. We verified the preservation of terminal respiratory structure by casting and by scanning electron microscopy (SEM) of the casts after decellularization. Whole lungs were obtained from 12 healthy Sprague-Dawley rats, cannulated through the trachea under sterile conditions, and decellularized using a detergent-based method. Casting of both natural and decellularized lungs was performed to verify preservation of the inner microstructure of scaffolds for further cell seeding. Alveolar cell seeding was performed using green fluorescent protein (GFP) lung cells and non-GFP lung cells, and a peristaltic pump. We assessed cell seeding using histological and immunohistochemical staining, and enzymatic evaluation. All cellular components were removed completely from the scaffolds, and histological staining and SEM of casts were used to verify the preservation of tissue structure. Tensile tests verified conservation of biomechanical properties. The hydroxyproline content of decellularized lungs was similar to native lung. Histological and immunohistochemical evaluations showed effective cell seeding on decellularized matrices. Enzymatic measurement of trypsin and alpha 1 antitrypsin suggested the potential functional properties of the regenerated lungs. Casts produced by our method have satisfactory geometrical properties for further cell seeding of lung scaffolds. Preservation of micro-architecture and terminal alveoli that was confirmed by SEM of lung casts increases the probability of an effective cell seeding process.  相似文献   
148.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   
149.
Site-directed mutagenesis was used to enhance the catalytic activity of pyranose 2-oxidase (P2Ox) from Trametes multicolor with different substrates. To this end, threonine at position 169 was replaced by glycine, alanine and serine, respectively. Using oxygen as electron acceptor the mutant T169G was equally active with d-glucose and d-galactose, whereas wild-type recombinant P2Ox only showed 5.2% relative activity with the latter substrate. When d-galactose was used as electron donor in saturating concentrations, T169G showed a 4.5-fold increase in its catalytic efficiency kcat/KM for the alternative electron acceptor 1,4-benzoquinone and a nine-fold increased kcat/KM value with the ferricenium ion compared with wt recP2Ox. Variant T169S showed an increase in its catalytic efficiency both with 1,4-benzoquinone (3.7 times) as well as with the ferricenium ion (1.4 times) when d-glucose was the substrate.  相似文献   
150.
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号