首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2734篇
  免费   331篇
  国内免费   274篇
  2024年   15篇
  2023年   69篇
  2022年   67篇
  2021年   104篇
  2020年   131篇
  2019年   162篇
  2018年   133篇
  2017年   113篇
  2016年   133篇
  2015年   136篇
  2014年   134篇
  2013年   166篇
  2012年   133篇
  2011年   138篇
  2010年   127篇
  2009年   126篇
  2008年   123篇
  2007年   166篇
  2006年   155篇
  2005年   130篇
  2004年   118篇
  2003年   95篇
  2002年   90篇
  2001年   78篇
  2000年   59篇
  1999年   61篇
  1998年   62篇
  1997年   40篇
  1996年   37篇
  1995年   37篇
  1994年   26篇
  1993年   28篇
  1992年   25篇
  1991年   16篇
  1990年   19篇
  1989年   10篇
  1988年   11篇
  1987年   19篇
  1986年   3篇
  1985年   14篇
  1984年   10篇
  1983年   4篇
  1982年   9篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
排序方式: 共有3339条查询结果,搜索用时 15 毫秒
21.
John G. Raei 《Hydrobiologia》1985,126(3):275-285
For two years a community of larval chironomid midges was studied in a sandy-run portion of a fourth order natural stream in SE Ohio, U.S.A. in order to determine if the species partitioned the spatial resources. The habitat structure was simplified from ten habitat variables to three significant principal components. The three eigenvectors were easily interpreted as sediment size, sediment heterogeneity, and organic deposition. Species abundances were loaded on these axes and niche metrics examined. Strong differences in habitat preference were demonstrated for midge species on each component. Also, there were no differences in distributions for the intraspecific instars for each species tested at a given time, but for each of the instars tested, their distributions were found to change from time to time. Apparently, individuals of a species, regardless of instar, simultaneously choose the same habitat, however, the preferred habitat may shift temporally due to change in resource availability, or niche expansion or compression due to competition.  相似文献   
22.
Managing wild crops of Gracilaria in central Chile   总被引:3,自引:3,他引:0  
Santelices  B.  Vásquez  J.  Ohme  U.  Fonck  E. 《Hydrobiologia》1984,116(1):77-89
  相似文献   
23.
Summary The general life history problem concerns the optimal allocation of resources to growth, survival and reproduction. We analysed this problem for a perennial model organism that decides once each year to switch from growth to reproduction. As a fitness measure we used the Malthusian parameterr, which we calculated from the Euler-Lotka equation. Trade-offs were incorporated by assuming that fecundity is size dependent, so that increased fecundity could only be gained by devoting more time to growth and less time to reproduction. To calculate numerically the optimalr for different growth dynamics and mortality regimes, we used a simplified version of the simulated annealing method. The major differences among optimal life histories resulted from different accumulation patterns of intrinsic mortalities resulting from reproductive costs. If these mortalities were accumulated throughout life, i.e. if they were senescent, a bangbang strategy was optimal, in which there was a single switch from growth to reproduction: after the age at maturity all resources were allocated to reproduction. If reproductive costs did not carry over from year to year, i.e. if they were not senescent, the optimal resource allocation resulted in a graded switch strategy and growth became indeterminate. Our numerical approach brings two major advantages for solving optimization problems in life history theory. First, its implementation is very simple, even for complex models that are analytically intractable. Such intractability emerged in our model when we introduced reproductive costs representing an intrinsic mortality. Second, it is not a backward algorithm. This means that lifespan does not have to be fixed at the begining of the computation. Instead, lifespan itself is a trait that can evolve. We suggest that heuristic algorithms are good tools for solving complex optimality problems in life history theory, in particular questions concerning the evolution of lifespan and senescence.  相似文献   
24.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
25.
Summary The classic Hawk—Dove game is extended to deal with continuous variation in resource-holding potential or RHP, when RHP is observable (via any sensory modality) but RHP difference is less than perfectly reliable as a predictor of the outcome of an escalated contest. The relationship between sensory and physical magnitudes of RHP is assumed to be governed by Fechner's psychophysical law, whose effect is that contestants interact as if they had perfect information about their relative RHP (as opposed to RHP difference). Thus, an animal is aggressive if its RHP exceeds a certain fraction, called its threshold, of its opponent's RHP and otherwise is non-aggressive; and the classic Hawk and Dove strategies correspond to zero and infinite thresholds, respectively. For RHPs drawn at random from an arbitrary Gamma distribution there is a unique evolutionarily stable strategy or ESS, which depends on a parameter measuring the reliability of RHP as a predictor of the outcome of a fight, on the ratio of the valueV of winning to the costC of losing (both measured in units of reproductive fitness) and on the mean µ and variance 2 of the RHP distribution. In a population at this ESS, ifV/C < 1 then the threshold is 1 and there is no fighting. AsV/C increases beyond 1 to a second critical value , however, the threshold decreases steadily from 1 to 0 and remains 0 forV/C > ; is an increasing function of , but a decreasing function of 2. That a lower variance of RHP can imply a lower escalation frequencyp is a novel insight of the analysis. The prediction is at first counterintuitive, because if the aggression threshold were fixed then larger variance would imply lowerp (dispersion effect of variance). When natural selection acts on the threshold, however, increasing the variance not only reduces the probability that an animal with larger RHP will be attacked by an animal with lower RHP at the existing threshold, but also reduces the expected costs of adopting that particular threshold, so that a mutant with a somewhat lower threshold can invade the population (selection effect of variance). Forp, the selection effect dominates toward the upper end of the interval 1 V/C .  相似文献   
26.
Abstract.
  • 1 The effects of resource limitation and the lethal and sublethal effects of a granulosis virus on a lepidopteran host, the Indian meal moth, Plodia interpunctella, were examined.
  • 2 The food quality was manipulated by the addition of an inert bulking agent (methyl cellulose) which caused the size, development rate and fecundity of the moths to be reduced.
  • 3 The resource quality had no effect on the mortality due to the virus. In contrast, sublethal effects of the virus on pupal weight were more apparent under conditions of resource limitation.
  • 4 Considerable variation between the sublethal effects after challenge with different doses of the virus was found. The balance between deleterious sublethal effects of the virus and the selection of more robust individuals by the bioassays is proposed as a mechanism to explain this variation.
  • 5 Implications for the dynamics of insect hosts and their pathogens are discussed.
  相似文献   
27.
It has long been thought that predation has had important ecological and evolutionary effects on primates as prey. Predation has been theorized to have been a major selective force in the evolution of hominids.1 In modern primates, behaviors such as active defense, concealment, vigilance, flight, and alarm calls have been attributed to the selective pressures of predation, as has group living itself. It is clear that primates, like other animals, have evolved ways to minimize their risk of predation. However, the extent to which they have been able to do so, given other constraints of living such as their own need to acquire food, has not yet been resolved. Perhaps most hotly debated is whether predation has been the primary selective force favoring the evolution of group living in primates. Part of the difficulty in resolving the debate lies in a paucity of direct evidence of predation. This is regrettable yet understandable since primatologists, by definition, focus on the study of primates, not predators of primates (unless these are also primates). Systematic direct evidence of the effects of predation can best be obtained by studying predators that are as habituated to observers as are their primate prey. Until this is done, we must continue to rely on opportunistic accounts of predation and predation attempts, and on systematically obtained indirect evidence. Such data reveal several interesting patterns: (1) although smaller primates may have greater predation rates than larger primates, even the largest primates are not invulnerable to predation; (2) the use by primates of unfamiliar areas can result in higher predation rates, which might be one pressure favoring philopatry, or site fidelity; (3) arboreal primates are at greater risk of predation when they are more exposed (at forest edges and tops of canopies) than in more concealed locations; (4) predation by mammalian carnivores may often be episodic; and (5) terrestrial primates may not experience greater predation than arboreal primates.  相似文献   
28.
The use of plant genetic resources contained in a large collection may be enhanced by specifying subsamples, called core samples. Five strategies for selecting a core sample from a collection of 3000 durum wheat accessions were applied and evaluated using four qualitative and eight quantitative spike characters. Each of the following strategies generated about 500 accessions for the core sample: random, random-systematic according to chronology of entry of the accessions into the collection, stratified by countryof-origin, stratified by log frequency by country-of-origin, and stratified by canonical variables. The first three strategies produced samples representative of the whole collection, but the remaining two produced the desired effect of increasing frequencies from less-represented countries-of-origin for several characters. The stratified canonical sample increased phenotypic variances. The quality of core samples is dependent upon good passport and evaluation data to partition the collection. The multivariate approach is extremely useful, but requires considerable data from the whole collection. Ecogeographic origin may be used in the absence of evaluation data on several characters to select useful core samples.  相似文献   
29.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号