首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6441篇
  免费   126篇
  国内免费   61篇
  2022年   25篇
  2021年   29篇
  2020年   33篇
  2019年   29篇
  2018年   29篇
  2017年   23篇
  2016年   34篇
  2015年   55篇
  2014年   123篇
  2013年   180篇
  2012年   126篇
  2011年   152篇
  2010年   130篇
  2009年   251篇
  2008年   284篇
  2007年   298篇
  2006年   292篇
  2005年   180篇
  2004年   190篇
  2003年   145篇
  2002年   154篇
  2001年   84篇
  2000年   144篇
  1999年   127篇
  1998年   115篇
  1997年   119篇
  1996年   99篇
  1995年   164篇
  1994年   196篇
  1993年   164篇
  1992年   165篇
  1991年   150篇
  1990年   165篇
  1989年   171篇
  1988年   170篇
  1987年   157篇
  1986年   154篇
  1985年   204篇
  1984年   228篇
  1983年   203篇
  1982年   224篇
  1981年   159篇
  1980年   135篇
  1979年   93篇
  1978年   43篇
  1977年   40篇
  1976年   36篇
  1973年   28篇
  1972年   45篇
  1971年   25篇
排序方式: 共有6628条查询结果,搜索用时 15 毫秒
981.
Abstract: Neuropeptide Y (NPY) gene expression is known to be modulated in the mossy fiber projection of hippocampal granule cells following seizure. We investigated NPY biosynthesis and metabolism in an attempt to characterize NPY biochemically as a neurotransmitter in the granule cell mossy fiber projection. NPY biosynthesis was compared in normal control animals and in animals that had experienced a single pentylenetetrazole-induced seizure. In situ hybridization analysis established the postseizure time course of preproNPY mRNA expression in the hippocampal formation, localizing the majority of increased preproNPY mRNA content to the hilus of the dentate gyrus. Radioimmunoassay analysis of the CA3/mossy fiber terminal subfield confirmed a subsequent increase in NPY peptide content. Biosynthesis of NPY peptide by granule cells and transport to the CA3/mossy fiber subfield was demonstrated by in vivo radiolabel infusion to the dentate gyrus/hilus followed by sequential HPLC purification of identified radiolabeled peptide from the CA3/mossy fiber terminal subfield. Additional in vivo radiolabeling studies revealed a postseizure increase in an unidentified NPY-like immunoreactive (NPY-LI) species. HPLC/radioimmunoassay analyses of CA3 subfield tissue extracts comparing normal control animals and pentylenetetrazole-treated animals confirmed the increased total NPY-LI, and demonstrated that the increased NPY-LI was comprised of a minor increase in native NPY and a major increase in the unknown NPY-LI. Data from subsequent and separate analyses incorporating immunoprecipitation with anti-C-terminal flanking peptide of NPY, further HPLC purification, and matrix-assisted laser desorption/ionization mass spectrometry support the conclusion that the unknown NPY-LI is methionine sulfoxide NPY. NPY and NPY-sulfoxide displayed differential calcium sensitivity for release from mossy fiber synaptosomes. Similar to NPY, NPY sulfoxide displayed high-affinity binding to each of the cloned Y1, Y2, Y4, and Y5 receptor subtypes. Postrelease inactivation of NPY was demonstrated in a mossy fiber synaptosomal preparation. Thus, the present study in combination with previously reported electrophysiological activity of NPY in the CA3 subfield demonstrates that NPY fulfills the classical criteria for a neurotransmitter in the hippocampal granule cell mossy fiber projection, and reveals the presence of two molecular forms of NPY that display differential mechanisms of release while maintaining similar receptor potencies.  相似文献   
982.
All-trans [11-3H]4,4-difluororetinyl acetate was synthesized by treating methyl all-trans [11-3H]4-oxoretinoate with diethylaminosulfurtrifluoride, followed by reduction and acetylation of the product. After oral administration of the radioactive difluoro analog in oil to rats, difluororetinol, difluororetinyl palmitate and related esters, 4-oxoretinol, 4-oxoretinoic acid and polar conjugated derivatives were identified in the intestine, liver, kidney and / or blood. The major metabolic products were difluororetinyl palmitate and related esters, which were stored in the liver. The presence of the difluoro analog in liver oil from treated rats was confirmed by 19F-NMR spectroscopy. Neither retinol nor retinyl esters were detected as products of the metabolism of the difluoro analog. Nonetheless, all-trans difluororetinyl acetate showed 26 ± 12% of the biological activity of all-trans retinyl acetate in the rat growth assay. Presumably, the difluoro analog is active per se in growth rather than by conversion to retinol or to one of its known growth-promoting metabolites. In general, however, the difluoro analog was metabolized in a manner very similar to vitamin A. The vitamin A moiety of administered difluororetinyl acetate and retinyl acetate was poorly stored (1.8–3.3%) in the liver of vitamin A-depleted rats, confirming and extending past reports that the liver storage mechanism is severely impaired when initial liver stores are very low.  相似文献   
983.
Phosphoproteins retard the rate at which collagen molecules undergo self-assembly into fibrils. The inhibition appears to be dependent on the amount of phosphoprotein present, with increasing phosphoprotein concentrations resulting in greater inhibition. Prior treatment of the phosphoprotein with calcium markedly increases the resultant inhibitory effect. Dentin phosphoproteins are considerably more effective than phosvitin in retarding collagen self-assembly, with retardation times for these hard tissue extracellular matrix proteins being 25–30 times greater than control values.  相似文献   
984.
Eighteen male Wistar rats weighing approximately 200 g were divided into three groups of six animals each. The experimental animals were maintained on nutritionally complete diets in which ethanol comprised 45% of the available energy. Control animals were pair-fed an equivalent diet in which sucrose was substituted isocalorically for ethanol. An additional control group received unlimited access to standard pelleted laboratory food and water. The investigations were carried out over 24 weeks. The effects on phospholipid, monogalactosyl glycolipid, and ganglioside composition after 24 weeks of feeding 43% alcohol were studied. There is abundant evidence that the changes in the cerebellum membrane phospholipids (phosphatidylethanolamine and phosphatidylcholine), gangliosides (GT1b), and myelin lipids (phosphatidylserine, sphingophospholipid, phosphatidylinositol, cerebrosides with hydroxy fatty acids, sulfoglycolipids, and monosialoganglioside GM1) occur as a result of chronic ethanol treatment.  相似文献   
985.
Hemoglobin has been encapsulated in phospholipid vesicles by extrusion of hemoglobin/lipid mixtures through polycarbonate membranes. This technique avoids the use of organic solvents, sonication, and detergents which have proven deleterious to hemoglobin. The vesicles are homogeneous, with a mean size of 2400 A as determined by photon correlation spectroscopy. The encapsulated hemoglobin binds oxygen reversibly and the vesicles are impermeable to ionic compounds. Hemoglobin encapsulated in egg phosphatidylcholine vesicles converts to methemoglobin within 2 days at 4 degrees C. By contrast, when a mixture of dimyristoyl phosphatidylcholine, cholesterol and dicetyl phosphate is used there is no acceleration in methemoglobin formation, and the preparation is stable for at least 14 days at 4 degrees C.  相似文献   
986.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   
987.
Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-γ) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-γ activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-γ in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.  相似文献   
988.
Incorporation of 8 mol percent lactosylceramide into small unilamellar vesicles consisting of cholesterol and sphingomyelin in an equimolar ratio and containing [3H]inulin as a marker resulted in an increase in total liver uptake and a drastic change in intrahepatic distribution of the liposomes after intravenous injection into rats. The control vesicles without glycolipid accumulated predominantly in the hepatocytes, but incorporation of the glycolipid resulted in a larger stimulation of Kupffer-cell uptake (3.2-fold) than of hepatocyte uptake (1.2-fold). Liposome preparations both with and without lactosylceramide in which part of the sphingomyelin was replaced by phosphatidylserine, resulting in a net negative charge of the vesicles, were cleared much more rapidly from the blood and taken up by the liver to higher extents. The negative charge had, however, no influence on the intrahepatic distributions. The fast hepatic uptake of the negatively charged liposomes allowed competition experiments with substrates for the galactose receptors on liver cells. Inhibition of blood clearance and liver uptake of lactosylceramide-containing liposomes by N-acetyl-d-galactosamine indicated the involvement of specific recognition sites for the liposomal galactose residues. This inhibitory effect of N-acetyl-d-galactosamine was shown to be mainly the result of a decreased liposome uptake by the Kupffer cells, compatible with the reported presence of a galactose specific receptor on this cell type (Kolb-Bachofen et al. (1982) Cell 29, 859–866). The difference between the results on sphingomyelin-based liposomes as described in this paper and those on phosphatidylcholine-based liposomes as published previously (Spanjer and Scherphof (1983) Biochim. Biophys. Acta 734, 40–47) are discussed.  相似文献   
989.
990.
The transport and distribution of apo- and holocytochrome b5 was investigated with the aid of specific antibodies. The holoenzyme was found to be localized mainly in the rough and smooth endoplasmic reticulum and in the Golgi system but some precipitation could also be obtained in the outer mitochondrial membranes and in the peroxisomes. The apoenzyme, however, could only be detected in the endoplasmic reticulum-Golgi system, which also was shown to be the sole site for incorporation of the prosthetic heme moiety. Time-course studies revealed that the labeled enzyme appeared both as apoenzyme and as holoenzyme in the rough endoplasmic reticulum 10 min after in vivo injection of radioactive leucine and that further transport to the smooth endoplasmic reticulum occurred within 10 min. The subsequent transport to other organelles, however, required a somewhat longer time and peak radioactivity in outer mitochondrial membranes was not attained until after 40 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号