首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   87篇
  国内免费   104篇
  2024年   6篇
  2023年   20篇
  2022年   16篇
  2021年   24篇
  2020年   21篇
  2019年   33篇
  2018年   26篇
  2017年   26篇
  2016年   26篇
  2015年   34篇
  2014年   48篇
  2013年   50篇
  2012年   25篇
  2011年   34篇
  2010年   24篇
  2009年   30篇
  2008年   52篇
  2007年   42篇
  2006年   40篇
  2005年   27篇
  2004年   29篇
  2003年   34篇
  2002年   20篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
排序方式: 共有821条查询结果,搜索用时 437 毫秒
31.
Lepsík M  Kríz Z  Havlas Z 《Proteins》2004,57(2):279-293
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors.  相似文献   
32.
Fluorescence correlation spectroscopy was used to measure the diffusion behavior of a mixture of DMPC or DMPC/DMPG liposomes with human serum albumin (HSA) and mesoporphyrin (MP), which was used as the fluorescent label for liposomes and HSA as well. For decomposing the fluorescence intensity autocorrelation function (ACF) into components corresponding to a liposome population, HSA and MP, we used a maximum entropy procedure that computes a distribution of diffusion times consistent with the ACF data. We found that a simple parametric non-linear fit with a discrete set of decay components did not converge to a stable parameter set. The distribution calculated with the maximum entropy method was stable and the average size of the particles calculated from the effective diffusion time was in good agreement with the data determined using the discrete-component fit.  相似文献   
33.
Ionizable groups play critical roles in biological processes. Computation of pK(a)s is complicated by model approximations and multiple conformations. Calculated and experimental pK(a)s are compared for relatively inflexible active-site side chains, to develop an empirical model for hydration entropy changes upon charge burial. The modification is found to be generally small, but large for cysteine, consistent with small molecule ionization data and with partial charge distributions in ionized and neutral forms. The hydration model predicts significant entropic contributions for ionizable residue burial, demonstrated for components in the pyruvate dehydrogenase complex. Conformational relaxation in a pH-titration is estimated with a mean-field assessment of maximal side chain solvent accessibility. All ionizable residues interact within a low protein dielectric finite difference (FD) scheme, and more flexible groups also access water-mediated Debye-Hückel (DH) interactions. The DH method tends to match overall pH-dependent stability, while FD can be more accurate for active-site groups. Tolerance for side chain rotamer packing is varied, defining access to DH interactions, and the best fit with experimental pK(a)s obtained. The new (FD/DH) method provides a fast computational framework for making the distinction between buried and solvent-accessible groups that has been qualitatively apparent from previous work, and pK(a) calculations are significantly improved for a mixed set of ionizable residues. Its effectiveness is also demonstrated with computation of the pH-dependence of electrostatic energy, recovering favorable contributions to folded state stability and, in relation to structural genomics, with substantial improvement (reduction of false positives) in active-site identification by electrostatic strain.  相似文献   
34.
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed.  相似文献   
35.
We present a solvable model that predicts the folding kinetics of two-state proteins from their native structures. The model is based on conditional chain entropies. It assumes that folding processes are dominated by small-loop closure events that can be inferred from native structures. For CI2, the src SH3 domain, TNfn3, and protein L, the model reproduces two-state kinetics, and it predicts well the average Phi-values for secondary structures. The barrier to folding is the formation of predominantly local structures such as helices and hairpins, which are needed to bring nonlocal pairs of amino acids into contact.  相似文献   
36.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   
37.
The goal of this work is to characterize structurally ambivalent fragments in proteins. We have searched the Protein Data Bank and identified all structurally ambivalent peptides (SAPs) of length five or greater that exist in two different backbone conformations. The SAPs were classified in five distinct categories based on their structure. We propose a novel index that provides a quantitative measure of conformational variability of a sequence fragment. It measures the context-dependent width of the distribution of (phi,xi) dihedral angles associated with each amino acid type. This index was used to analyze the local structural propensity of both SAPs and the sequence fragments contiguous to them. We also analyzed type-specific amino acid composition, solvent accessibility, and overall structural properties of SAPs and their sequence context. We show that each type of SAP has an unusual, type-specific amino acid composition and, as a result, simultaneous intrinsic preferences for two distinct types of backbone conformation. All types of SAPs have lower sequence complexity than average. Fragments that adopt helical conformation in one protein and sheet conformation in another have the lowest sequence complexity and are sampled from a relatively limited repertoire of possible residue combinations. A statistically significant difference between two distinct conformations of the same SAP is observed not only in the overall structural properties of proteins harboring the SAP but also in the properties of its flanking regions and in the pattern of solvent accessibility. These results have implications for protein design and structure prediction.  相似文献   
38.
The populations and transitions between Ramachandran basins are studied for combinations of the standard 20 amino acids in monomers, dimers and trimers using an implicit solvent Langevin dynamics algorithm and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates are influenced by the nearest neighbor's conformation and identity, contrary to the Flory isolated-pair hypothesis. This conclusion is robust to the choice of force-field, even though the use of different force-fields produces large variations in the populations and inter-conversion rates between the dominant helical, extended beta, and polyproline II basins. The computed variation of conformational and dynamical properties with different force-fields exceeds the difference between explicit and implicit solvent calculations using the same force-field. For all force-fields, the inter-basin transitions exhibit a directional dependence, with most transitions going through extended beta conformation, even when it is the least populated basin. The implications of these results are discussed in the context of estimates for the backbone entropy of single residues, and for the ability of all-atom simulations to reproduce experimental protein folding data.  相似文献   
39.
Circular versions of a large number of proteins have been designed by connecting the N and C termini via peptide linkers. A motivation for these designs is the assumed enhancement in folding stability, because backbone cyclization reduces the chain entropy of the unfolded state. Here, it is recognized that backbone cyclization also reduces the chain entropy of a flexible peptide linker in the folded state. Specifically, the end-to-end distance of the linker is restricted to fluctuations around the average displacement between the N and C termini of the folded protein. The balance of the chain-entropy reductions in the folded and unfolded states is used to predict the change in the unfolding free energy, deltadeltaG(cycl), by backbone cyclization. Predicted values of deltadeltaG(cycl) are in quantitative agreement with results of a careful study on cyclizing the 34 residue PIN1 WW domain by linkers with two to seen residues. The experimental results of an optimal linker length l=4 and a maximum stabilization of 1.7 kcal/mol are reproduced. Calculations of deltadeltaG(cycl) for a broad selection of circular proteins suggest that the stabilizing effect of backbone cyclization is modest, reflecting entropy reductions in both the unfolded and the folded states.  相似文献   
40.
Traditional diversity indices are computed from the abundances of species present and are insensitive to taxonomic differences between species. However, a community in which most species belong to the same genus is intuitively less diverse than another community with a similar number of species distributed more evenly between genera. In this paper, we propose an information-theoretical measure of taxonomic diversity that reflects both the abundances and taxonomic distinctness of the species. Unlike previous measures of taxonomic diversity, such as Rao's quadratic entropy, in this new measure the analyzed taxonomic properties are associated with the single species instead of species pairs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号