首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   87篇
  国内免费   104篇
  2024年   6篇
  2023年   20篇
  2022年   16篇
  2021年   24篇
  2020年   21篇
  2019年   33篇
  2018年   26篇
  2017年   26篇
  2016年   26篇
  2015年   34篇
  2014年   48篇
  2013年   50篇
  2012年   25篇
  2011年   34篇
  2010年   24篇
  2009年   30篇
  2008年   52篇
  2007年   42篇
  2006年   40篇
  2005年   27篇
  2004年   29篇
  2003年   34篇
  2002年   20篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
排序方式: 共有821条查询结果,搜索用时 134 毫秒
51.
Surface lysine methylation (SLM) is a technique for improving the rate of success of protein crystallization by chemically methylating lysine residues. The exact mechanism by which SLM enhances crystallization is still not clear. To study these mechanisms, and to analyze the conditions where SLM will provide the optimal benefits for rescuing failed crystallization experiments, we compared 40 protein structures containing N,N-dimethyl-lysine (dmLys) to a nonredundant set of 18,972 nonmethylated structures from the PDB. By measuring the relative frequency of intermolecular contacts (where contacts are defined as interactions between the residues in proximity with a distance of 3.5 Å or less) of basic residues in the methylated versus nonmethylated sets, dmLys-Glu contacts are seen more frequently than Lys-Glu contacts. Based on observation of the 10 proteins with both native and methylated structures, we propose that the increased rate of contact for dmLys-Glu is due to both a slight increase in the number of amine-carboxyl H-bonds and to the formation of methyl C–H···O interactions. By comparing the relative contact frequencies of dmLys with other residues, the mechanism by which methylation of lysines improves the formation of crystal contacts appears to be similar to that of Lys to Arg mutation. Moreover, analysis of methylated structures with the surface entropy reduction (SER) prediction server suggests that in many cases SLM of predicted SER sites may contribute to improved crystallization. Thus, tools that analyze protein sequences and mark residues for SER mutation may identify proteins with good candidate sites for SLM.  相似文献   
52.
The compatibility of natural resource use by people and mountain gorillas (Gorilla beringei beringei) within the Parc National des Volcans was studied. The distribution of gorillas was modelled using a Maximum Entropy algorithm. Biophysical predictor variables were trained with daily GPS locations of gorillas during 2006. Elevation, as a climate surrogate, was the best predictor (58%) of the occurrence of gorillas. The mid‐altitudes (2500–3500 m a.s.l.) contained the bulk of the gorilla groups. Incoming solar radiation, as proxy for comfortable nesting sites, was the second best predictor (17%). Vegetation types, as foliage provider, (13%) and slope steepness for providing security (12%) were contributing predictors. The modelled and actual gorilla distributions were together overlaid with people’s resource use in the park. Both people and gorillas were congregated in the areas identified as most suitable for gorillas. However, within these areas spatial segregation was found between human natural resource‐users and gorillas. Therefore, the number of gorillas is likely to be limited by the human natural resource use within the park. A perimeter fence, the introduction of community‐based natural resource management, and a buffer zone are discussed as short‐, medium‐ and long‐term mitigation measures.  相似文献   
53.
The conformational behavior of receptor-bound acetylcholine (ACh) was investigated by molecular dynamics simulations. Based on the great similarity among muscarinic receptors, the study was focused on the human M(1), M(2), and M(5) receptors as previously modeled by us. The results showed that receptor-bound ACh was not frozen in a single preferred conformation but preserved an unexpected fraction of its conformational space. However, there were marked differences between the three receptors since the ligand was mostly trans in the M(1) receptor, equally distributed among trans and gauche conformers in M(2), and exclusively gauche in the M(5); the greater flexibility of M(2)-bound ACh was paralleled by the greater flexibility of the occupied M(2) binding site. By contrast, the property space of receptor-bound ACh, and particularly its virtual (computed, conformation-dependent) lipophilicity, was restricted to relatively narrow ranges optimal for successful interaction. Experimental binding investigations to the individual human M(1), M(2), and M(5) muscarinic receptors showed ACh to have a 10-fold higher affinity for the M(2) compared to the M(1) and M(5) receptors. This selectivity was not confirmed by the calculated binding scores, a fact postulated to be caused by the absence of an entropy component in such binding scores. Indeed, the Shannon entropy of all geometric and physicochemical properties monitored were markedly higher in M(2)-bound ACh compared to M(1)-bound and M(5)-bound ACh. This finding suggests that the selectivity profile of acetylcholine for the M(2) receptor is largely entropy-driven, a fact that might explain the intrinsic difficulty to design subtype-selective muscarinic agonists.  相似文献   
54.
Growing well-diffracting crystals constitutes a serious bottleneck in structural biology. A recently proposed crystallization methodology for "stubborn crystallizers" is to engineer surface sequence variants designed to form intermolecular contacts that could support a crystal lattice. This approach relies on the concept of surface entropy reduction (SER), i.e., the replacement of clusters of flexible, solvent-exposed residues with residues with lower conformational entropy. This strategy minimizes the loss of conformational entropy upon crystallization and renders crystallization thermodynamically favorable. The method has been successfully used to crystallize more than 15 novel proteins, all stubborn crystallizers. But the choice of suitable sites for mutagenesis is not trivial. Herein, we announce a Web server, the surface entropy reduction prediction server (SERp server), designed to identify mutations that may facilitate crystallization. Suggested mutations are predicted based on an algorithm incorporating a conformational entropy profile, a secondary structure prediction, and sequence conservation. Minor considerations include the nature of flanking residues and gaps between mutation candidates. While designed to be used with default values, the server has many user-controlled parameters allowing for considerable flexibility. Within, we discuss (1) the methodology of the server, (2) how to interpret the results, and (3) factors that must be considered when selecting mutations. We also attempt to benchmark the server by comparing the server's predictions with successful SER structures. In most cases, the structure yielding mutations were easily identified by the SERp server. The server can be accessed at http://www.doe-mbi.ucla.edu/Services/SER.  相似文献   
55.
56.
57.
58.
Hyuntae Na  Guang Song 《Proteins》2015,83(4):757-770
Ligand migration and binding are central to the biological functions of many proteins such as myoglobin (Mb) and it is widely thought that protein breathing motions open up ligand channels dynamically. However, how a protein exerts its control over the opening and closing of these channels through its intrinsic dynamics is not fully understood. Specifically, a quantitative delineation of the breathing motions that are needed to open ligand channels is lacking. In this work, we present and apply a novel normal mode‐based method to quantitatively delineate what and how breathing motions open ligand migration channels in Mb and its mutants. The motivation behind this work springs from the observation that normal mode motions are closely linked to the breathing motions that are thought to open ligand migration channels. In addition, the method provides a direct and detailed depiction of the motions of each and every residue that lines a channel and can identify key residues that play a dominating role in regulating the channel. The all‐atom model and the full force‐field employed in the method provide a realistic energetics on the work cost required to open a channel, and as a result, the method can be used to efficiently study the effects of mutations on ligand migration channels and on ligand entry rates. Our results on Mb and its mutants are in excellent agreement with MD simulation results and experimentally determined ligand entry rates. Proteins 2015; 83:757–770. © 2015 Wiley Periodicals, Inc.  相似文献   
59.
We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号