首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7546篇
  免费   776篇
  国内免费   174篇
  8496篇
  2023年   184篇
  2022年   143篇
  2021年   220篇
  2020年   285篇
  2019年   370篇
  2018年   321篇
  2017年   305篇
  2016年   300篇
  2015年   306篇
  2014年   425篇
  2013年   503篇
  2012年   318篇
  2011年   357篇
  2010年   291篇
  2009年   364篇
  2008年   419篇
  2007年   432篇
  2006年   304篇
  2005年   298篇
  2004年   254篇
  2003年   192篇
  2002年   222篇
  2001年   178篇
  2000年   160篇
  1999年   154篇
  1998年   108篇
  1997年   86篇
  1996年   90篇
  1995年   77篇
  1994年   69篇
  1993年   62篇
  1992年   68篇
  1991年   80篇
  1990年   43篇
  1989年   42篇
  1988年   39篇
  1987年   42篇
  1986年   32篇
  1985年   39篇
  1984年   40篇
  1983年   29篇
  1982年   60篇
  1981年   29篇
  1980年   29篇
  1979年   31篇
  1978年   15篇
  1975年   11篇
  1974年   14篇
  1973年   14篇
  1972年   17篇
排序方式: 共有8496条查询结果,搜索用时 15 毫秒
161.
对乳酸发酵过程中几种典型的发酵过程动力学,如游离细菌进行乳酸发酵动力学、海藻酸钙固定化米根霉的发酵动力学、转盘反应器固定化米根霉的发酵动力学以及聚氨酯固定化米根霉的发酵动力学进行了阐述。  相似文献   
162.
在过去的100年里,动物模型的研究已在人类疫苗的发展中起到至关重要的作用。动物模型的使用不仅有助于疫苗从基本研究转到临床应用,而且动物模型通常能够预测疫苗实用的潜能,从而帮助疫苗的生产商预测财政风险。由于每种动物模型都有其自身的优缺点,选择一种合适的动物模型可促进疫苗研发的顺利进行。  相似文献   
163.
转基因动物在输血医学中的应用   总被引:2,自引:0,他引:2  
转基因动物技术是在动物整体水平研究和表达目的基因的生物技术,其基本特点是:分子及细胞水平操作,组织及整体水平表达,是常规分子生物学理论和技术的拓展和延伸,也是现代生物高技术研究和开发的热点之一。本简述了转基因动物在输血医学领域的应用及其发展前景,包括利用转基因动物生物反应器制备人血浆蛋白和人血红蛋白、建立血传播病毒的感染模型和血液相关遗传模型以及转基因动物与输血医学的基础研究等。  相似文献   
164.
165.
Growth of the young is an important part of the life history in birds. However, modelling methods have paid little attention to the choice of regression model used to describe its pattern. The aim of this study was to evaluate whether a single sigmoid model with an upper asymptote could describe avian growth adequately. We compared unified versions of five growth models of the Richards family (the four‐parameter U‐Richards and the three‐parameter U‐logistic, U‐Gompertz, U‐Bertalanffy and U4‐models) for three traits (body mass, tarsus‐length and wing‐length) for 50 passerine species, including species with varied morphologies and life histories. The U‐family models exhibit a unified set of parameters for all models. The four‐parameter U‐Richards model proved a good choice for fitting growth curves to various traits – its extra d‐parameter allows for a flexible placement of the inflection point. Which of the three‐parameter U‐models was the best performing varied greatly between species and between traits, as each three‐parameter model had a different fixed relative inflection value (fraction of the upper asymptote), implying a different growth pattern. Fixing the asymptotes to averages for adult trait value generally shifted the model preference towards one with lower relative inflection values. Our results illustrate an overlooked difficulty in the analysis of organismal growth, namely, that a single traditional three‐parameter model does not suit all growth data. This is mostly due to differences in inflection placement. Moreover, some biometric traits require more attention when estimating growth rates and other growth‐curve characteristics. We recommend fitting either several three‐parameter models from the U‐family, where the parameters are comparable between models, or only the U‐Richards model.  相似文献   
166.
2017至2020年,在浙江九龙山国家级自然保护区内及周边网格化布设63台Ltl-6210MC红外相机,对区内的黑熊(Ursus thibetanus)及其同域物种进行调查。监测期间,5台红外相机共拍摄到9张黑熊活动照片和6次黑熊活动视频,提取到7次黑熊有效照片。根据本次监测到的黑熊位点与文献记录,共确定华东地区黑熊出现位点14个。基于黑熊栖息地特征选择土地利用和7个生境因子为预测背景,利用物种分布模型预测黑熊在华东地区的潜在分布区。为提高预测的精准度,采用了biomod 2软件包中的10种模型算法,并用真实技能统计值(TSS)和曲线下面积值(AUC)来评估这10种算法,只有当TSS值超过0.8且AUC值大于0.9时,才使用该模型算法预测物种的潜在分布区。结果表明:(1)推测保护区内现存2或3只黑熊;(2)最冷月份最低温(Bio6)和最湿季节降水量(Bio16)是限制黑熊分布的主要环境因子;(3)黑熊在华东地区存在3个主要潜在分布区,即浙–赣潜在分布区、浙–赣–皖潜在分布区和浙–皖潜在分布区,适生区面积约为317km~2。综上所述,这些结果可为加强华东地区黑熊的保护提供一定的资料。  相似文献   
167.
目的:用经典的双生子设计探讨遗传因素对青少年身高、体重、体质指数(BMI)等体型指征的影响程度。方法:从青岛市双生子库中选择自愿参加本研究的362对11-19岁双生子,测量身高、体重。同性别的双生子通过16个多态标记进行卵型鉴定,在此基础上,应用Mx软件构建结构方程模型分析计算遗传度。结果:对362对有效双生子数据进行分析,其中同卵双生子194对,异卵双生子168对,身高的最佳拟合模型ACE模型,体重和BMI的最佳拟合模型为AE模型。调整年龄性别后,身高的遗传度为66%,体重的遗传度为84%,体质指数的遗传度为75%。结论:在青少年体型指征的相关指标中,身高、体重、BMI受遗传因素影响都较大。  相似文献   
168.
The koala's Phascolarctos cinereus distribution is currently restricted to eastern and south‐eastern Australia. However, fossil records dating from 70 ± 4 ka (ka = 103 yr) from south‐western Australia and the Nullarbor Plain are evidence of subpopulation extinctions in the southwest at least after the Last Interglacial (~128–116 ka). We hypothesize that koala sub‐population extinctions resulted from the eastward retraction of the koala's main browse species in response to unsuitable climatic conditions. We further posit a general reduction in the distribution of main koala‐browse trees in the near future in response climate change. We modelled 60 koala‐browse species and constructed a set of correlative species distribution models for five time periods: Last Interglacial (~128–116 ka), Last Glacial Maximum (~23–19 ka), Mid‐Holocene (~7–5 ka), present (interpolations of observed data, representative of 1960–1990), and 2070. We based our projections on five hindcasts and one forecast of climatic variables extracted from WorldClim based on two general circulation models (considering the most pessimistic scenario of high greenhouse‐gas emissions) and topsoil clay fraction. We used 17 dates of koala fossil specimens identified as reliable from 70 (± 4) to 535 (± 49) ka, with the last appearance of koalas at 70 ka in the southwest. The main simulated koala‐browse species were at their greatest modelled extent of suitability during the Last Glacial Maximum, with the greatest loss of koala habitat occurring between the Mid‐Holocene and the present. We predict a similar habitat loss between the present and 2070. The spatial patterns of habitat change support our hypothesis that koala extinctions in the southwest, Nullarbor Plain and central South Australia resulted from the eastward retraction of the dominant koala‐browse species in response to long‐term climate changes. Future climate patterns will likely increase the extinction risk of koalas in their remaining eastern ranges.  相似文献   
169.
Honey bees play a critical role in the maintenance of plant biodiversity and sustainability of food webs. In the past few decades, bees have been subjected to biotic and abiotic threats causing various colony disorders. Therefore, monitoring solutions to help beekeepers to improve bee health are necessary. Matrix‐assisted laser desorption ionization–mass spectrometry (MALDI–MS) profiling has emerged within this decade as a powerful tool to identify in routine micro‐organisms and is currently used in real‐time clinical diagnosis. MALDI BeeTyping is developed to monitor significant hemolymph molecular changes in honey bees upon infection with a series of entomopathogenic Gram‐positive and ‐negative bacteria. A Serratia marcescens strain isolated from one naturally infected honey bee collected from the field is also considered. A series of hemolymph molecular mass fingerprints is individually recorded and to the authors' knowledge, the first computational model harboring a predictive score of 97.92% and made of nine molecular signatures that discriminate and classify the honey bees’ systemic response to the bacteria is built. Hence, the model is challenged by classifying a training set of hemolymphs and an overall recognition of 91.93% is obtained. Through this work, a novel, time and cost saving high‐throughput strategy that addresses honey bee health on an individual scale is introduced.  相似文献   
170.
林云  毕海燕  李超  云映霞 《植物研究》2019,39(2):310-320
对我国11个双子叶植物(Dicotyledon)原白中模式标本引证的排印错误做了更正:砚山锥栗(壳斗科)原白中错误地将模式标本引证为王启无84116,实际应为王启无84416,前者属于菊科植物Inuna helianthus-aquatica C.Y.Wu ex Ling。长果柯(壳斗科)原白中错误地将模式标本引证为K.M.Feng 13012,实际应为K.M.Feng 13102,前者属于冬青科植物Ilex triflora Bl.。福建红小麻(荨麻科)原白中错误地将主模式标本引证为C.J.Chen&Z.Y.Li 109,实际应为C.J.Chen&Z.Y.Li 103,前者属于荨麻科植物Oreocnide frutescens(Thunb.)Miq.。少毛全缘叶紫麻(荨麻科)原白中错误地将主模式标本引证为N.K.Chun 44099,实际应为N.K.Chun 44033,前者属于杜鹃花科植物Lyonia ovalifolia(Wallich)Drude var.rubrovenia(Merr.)Judd.。甘南铁线莲(毛茛科)原白中错误地将主模式标本引证为Baishuijiang Exped.4490,实际应为Baishuijiang Exped.4990,前者属于卫矛科植物Euonymus alatus(Thunb.)Sieb.。矮粗距翠雀花(毛茛科)原白中错误地将模式标本引证为Sichuan Veg.Exped.3137,实际应为Sichuan Veg.Exped.3173,前者属于龙胆科植物Gentiana conduplicata T.N.Ho。镇康黄芪(豆科)原白中错误地将主模式标本引证为T.T.Yu 17255,实际应为T.T.Yu 17225,前者属于莎草科植物Scirpus lushanensis Ohwi。宽翼棘豆(豆科)原白中错误地将模式标本引证为Qinghai-Xizang Comp.Exped.9484,实际应为Qinghai-Xizang Comp.Exped.9485,前者属于石竹科植物Arenaria kansuensis Maxim.。肾瓣黄芪(豆科)原白中错误地将模式标本引证为Qinghai-Xizang Comp.Exped.3650,实际应为Qinghai-Xizang Comp.Exped.3605,前者属于麻黄科植物Ephedra gerardiana Wall.ex Mey.。湖南长柄槭(槭树科)原白中错误地将模式标本引证为李泽棠2944,实际应为李泽棠2994,前者属于杜鹃花科植物Pieris formosa D.Don。峨眉勾儿茶(鼠李科)原白中错误地将模式标本引证为杨光辉54729,实际应为杨光辉54723,前者属于山茱萸科植物Helwingia chinensis Batalin.。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号