首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  22篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2005年   2篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
Mutations in K-Ras GTPase replacing Gly12 with either Asp or Val are common in cancer. These mutations decelerate intrinsic and catalyzed GTP hydrolysis, leading to accumulation of K-Ras-GTP in cells. Signaling cascades initiated by K-Ras-GTP promote cell proliferation, survival, and invasion. Despite functional differences between the most frequent G12D mutation and the most aggressive and chemotherapy resistant G12V mutation, their long-suspected distinct structural features remain elusive. Using NMR, X-ray structures, and computational methods, we found that oncogenic mutants of K-Ras4B, the predominant splice variant of K-Ras, exhibit distinct conformational dynamics when GDP-bound, visiting the “active-like” conformational state similar to the one observed in GTP-bound K-Ras. This behavior distinguishes G12V from wild type and G12D K-Ras4B-GDP. The likely reason is interactions between the aliphatic sidechain of V12 and the Switch II region of K-Ras4BG12V-GDP, which are distinct in K-Ras4BG12D-GDP. In the X-ray structures, crystal contacts reduce the dynamics of the sidechain at position 12 by stabilizing the Switch I region of the protein. This explains why structural differences between G12V and G12D K-Ras have yet not been reported. Together, our results suggest a previously unknown mechanism of K-Ras activation. This mechanism relies on conformational dynamics caused by specific oncogenic mutations in the GDP-bound state. Our findings also imply that the therapeutic strategies decreasing the level of K-Ras-GTP by interfering with nucleotide exchange or by expediting GTP hydrolysis may work differently in different oncogenic mutants.  相似文献   
22.
Recent advances in cancer biology have subsequently led to the development of new molecularly targeted anti-cancer agents that can effectively hit cancer-related proteins and pathways. Despite better insight into genomic aberrations and diversity of cancer phenotypes, it is apparent that proteomics too deserves attention in cancer research. Currently, a wide range of proteomic technologies are being used in quest for new cancer biomarkers with effective use. These, together with newer technologies such as multiplex assays could significantly contribute to the discovery and development of selective and specific cancer biomarkers with diagnostic or prognostic values for monitoring the disease state. This review attempts to illustrate recent advances in the field of cancer biomarkers and multifaceted approaches undertaken in combating cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号