首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   264篇
  国内免费   93篇
  2024年   7篇
  2023年   40篇
  2022年   44篇
  2021年   62篇
  2020年   58篇
  2019年   80篇
  2018年   101篇
  2017年   68篇
  2016年   85篇
  2015年   90篇
  2014年   188篇
  2013年   262篇
  2012年   149篇
  2011年   107篇
  2010年   88篇
  2009年   103篇
  2008年   137篇
  2007年   124篇
  2006年   91篇
  2005年   89篇
  2004年   83篇
  2003年   67篇
  2002年   72篇
  2001年   52篇
  2000年   41篇
  1999年   26篇
  1998年   37篇
  1997年   30篇
  1996年   22篇
  1995年   29篇
  1994年   25篇
  1993年   18篇
  1992年   19篇
  1991年   15篇
  1990年   16篇
  1989年   9篇
  1988年   14篇
  1987年   8篇
  1986年   5篇
  1985年   60篇
  1984年   26篇
  1983年   13篇
  1982年   18篇
  1981年   18篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
排序方式: 共有2741条查询结果,搜索用时 187 毫秒
61.
62.
63.
7,9-Diaryl-1,6,8-trioxaspiro[4.5]dec-3-en-2-ones are a recently described group of spirocyclic butenolides that can be generated rapidly and as a single diastereomer through a cascade process between γ-hydroxybutenolides and aromatic aldehydes. The following outlines our findings that these spirocycles are potently cytotoxic and have a dramatic structure–function profile that provides excellent insight into the structural features required for this potency.  相似文献   
64.
We apply a method to evaluate the strength of the evidence for deviations from uniform land change in a coastal area, in the context of Intensity Analysis. The errors in the CORINE maps at 1990 and 2006 can influence the apparent change, but the errors are unknown because error assessment of the 1990 map has never been released, while the error of the 2006 map has been checked for only some countries. The 1990 and the 2006 maps of a coastal watershed in Portugal served as the data to compute the intensities of changes among eight categories. We evaluate the sizes and types of errors that could explain deviations from uniform intensities. Errors in 2.0% of the 2006 map can explain all apparent deviations from uniform gains. Errors in 1.5% of the 1990 map can explain all apparent deviations from uniform losses. Errors in less than 0.7% of the 1990 map can explain all apparent deviations from uniform transitions to each gaining category. We analyse the strength of the evidence for deviations from uniform intensities in light of historical processes of change. Historical processes can explain some transitions that the data show, while the hypothesised errors in the data are the explanation for other transitions that are not consistent with known processes. Inconsistent transitions are an indication of the misclassification errors that could propagate to other land cover change applications, as in the assessment of hydrological processes.  相似文献   
65.
Dopaminergic projections from the ventral tegmental area (VTA) to multiple efferent targets are implicated in pair bonding, yet the role of the VTA in the maintenance of long‐term pair bonds is not well characterized. Complex interactions between numerous neuromodulators modify activity in the VTA, suggesting that individual differences in patterns of gene expression in this region may explain individual differences in long‐term social interactions in bonded pairs. To test this hypothesis we used RNA‐seq to measure expression of over 8000 annotated genes in male zebra finches in established male‐female pairs. Weighted gene co‐expression network analysis identified a gene module that contained numerous dopamine‐related genes with TH found to be the most connected gene of the module. Genes in this module related to male agonistic behaviors as well as bonding‐related behaviors produced by female partners. Unsupervised learning approaches identified two groups of males that differed with respect to expression of numerous genes. Enrichment analyses showed that many dopamine‐related genes and modulators differed between these groups, including dopamine receptors, synthetic and degradative enzymes, the avian dopamine transporter and several GABA‐ and glutamate‐related genes. Many of the bonding‐related behaviors closely associated with VTA gene expression in the two male groups were produced by the male's partner, rather than the male himself. Collectively, results highlight numerous candidate genes in the VTA that can be explored in future studies and raise the possibility that the molecular/genetic organization of the VTA may be strongly shaped by a social partner and/or the strength of the pair bond.  相似文献   
66.
67.
68.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
69.
《Fungal biology》2020,124(10):892-902
Accurate species delimitation has a pivotal role in conservation biology, and it is especially important for threatened species where decisions have political and economic consequences. Finding and applying appropriate character sets and analytical tools to resolve interspecific relationships remains challenging in lichenized fungi. The main aim of our study was to re-assess the species boundaries between Usnea subfloridana and Usnea florida, which have been phylogenetically indistinguishable until now, but are different in reproductive mode and ecological preferences, using fungal-specific simple sequence repeats (SSR), i.e. microsatellite markers. Bayesian clustering analysis, discriminant analysis of principal components (DAPC), minimal spanning network (MSN), and principal component analysis (PCA) failed to separate U. florida and U. subfloridana populations. However, a low significant differentiation between the two taxa was observed across all populations according to AMOVA results. Also, analysis of shared haplotypes and statistical difference in clonal diversity (M) supported the present-day isolation between the apotheciate U. florida and predominantly sorediate U. subfloridana. Our results do not provide a clear support either for the separation of species in this pair or the synonymization of U. florida and U. subfloridana. We suggest that genome-wide data could help resolve the taxonomic question in this species pair.  相似文献   
70.
《植物生态学报》2020,44(4):350
水分是生态系统的重要因子, 水同位素自然示踪和人工标记是研究生态系统水循环过程的重要方法, 利用水同位素所具有的示踪、整合和指示等功能特征, 通过测量和分析生态系统中不同组分所含水分的氢氧同位素比值的变化情况, 可实现生态系统蒸散发的拆分、植物水分来源判定和叶片水同位素富集机理研究, 是研究生态系统水循环过程机理和生态学效应不可或缺的技术手段。该文首先简要回顾了生态系统水同位素发展和应用的历史, 在此基础上阐述了水同位素技术和方法在生态学研究热点领域应用的基本原理, 概述了水同位素在植物水分来源判定、蒸散发拆分、露水来源拆分、降水的水汽来源拆分以及 17O-excess的研究进展, 并介绍了植物叶片水富集机理及基于稳定同位素的碳水耦合研究。最后, 指出了水同位素研究亟待解决的问题, 展望了水同位素应用的前沿方向, 旨在利用水同位素分析加深对生态系统的水分动态、植被格局和生理过程的理解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号