首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12707篇
  免费   711篇
  国内免费   418篇
  2023年   146篇
  2022年   188篇
  2021年   289篇
  2020年   254篇
  2019年   285篇
  2018年   369篇
  2017年   256篇
  2016年   252篇
  2015年   334篇
  2014年   525篇
  2013年   780篇
  2012年   437篇
  2011年   478篇
  2010年   422篇
  2009年   532篇
  2008年   681篇
  2007年   621篇
  2006年   668篇
  2005年   561篇
  2004年   534篇
  2003年   487篇
  2002年   467篇
  2001年   322篇
  2000年   304篇
  1999年   301篇
  1998年   293篇
  1997年   256篇
  1996年   248篇
  1995年   252篇
  1994年   228篇
  1993年   244篇
  1992年   198篇
  1991年   186篇
  1990年   186篇
  1989年   150篇
  1988年   138篇
  1987年   118篇
  1986年   94篇
  1985年   98篇
  1984年   140篇
  1983年   82篇
  1982年   85篇
  1981年   83篇
  1980年   70篇
  1979年   54篇
  1978年   44篇
  1977年   26篇
  1976年   24篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Average protein density is a molecular-weight-dependent function   总被引:3,自引:0,他引:3  
The mass density of proteins is a relevant basic biophysical quantity. It is also a useful input parameter, for example, for three-dimensional structure determination by protein crystallography and studies of protein oligomers in solution by analytic ultracentrifugation. We have performed a critical analysis of published, theoretical, and experimental investigations about this issue and concluded that the average density of proteins is not a constant as often assumed. For proteins with a molecular weight below 20 kDa, the average density exhibits a positive deviation that increases for decreasing molecular weight. A simple molecular-weight-depending function is proposed that provides a more accurate estimate of the average protein density.  相似文献   
993.
The rate of membrane protein (MP) structure determination has been examined for the 18-year period following the publication of the first high-resolution crystal structure. The growth is solidly exponential, but lags behind the rate for soluble proteins during the equivalent time period.  相似文献   
994.
Two hydrophobic sequences, 24 and 30 residues long, identify the membrane-spanning segments of chemoreceptor Trg from Escherichia coli. As in other related chemoreceptors, these helical sequences are longer than the minimum necessary for an alpha-helix to span the hydrocarbon region of a biological membrane. Thus, the specific positioning of the segments relative to the hydrophobic part of the membrane cannot be deduced from sequence alone. With the aim of defining the positioning for Trg experimentally, we determined accessibility of a hydrophilic sulfhydryl reagent to cysteines introduced at each position within and immediately outside the two hydrophobic sequences. For both sequences, there was a specific region of uniformly low accessibility, bracketed by regions of substantial accessibility. The two low-accessibility regions were each 19 residues long and were in register in the three-dimensional organization of the transmembrane domain deduced from independent data. None of the four hydrophobic-hydrophilic boundaries for these two membrane-embedded sequences occurred at a charged residue. Instead, they were displaced one to seven residues internal to the charged side chains bracketing the extended hydrophobic sequences. Many hydrophobic sequences, known or predicted to be membrane-spanning, are longer than the minimum necessary helical length, but precise membrane boundaries are known for very few. The cysteine-accessibility approach provides an experimental strategy for determining those boundaries that could be widely applicable.  相似文献   
995.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules.  相似文献   
996.
The three-phase partitioning (TPP) technique was used upstream to isolate/concentrate secreted proteins from Corynebacterium pseudotuberculosis cultured in a complex liquid medium. Several parameters of the TPP technique (15, 30, or 60% ammonium sulfate concentration; 4.0, 5.5, or 7.0 pH; and primary (n) or tertiary (t)-butanol solvent isomer) were varied to determine the optimal recovery of serologically and cellularly immunoreactive extracted proteins. A TPP extraction made with 30% ammonium sulfate and an initial pH of 4.0 gave the best humoral and cellular immunoreactivity of caseous lymphadenitis infected goats. In particular, two immunogenic secreted (16 and 125 kDa) proteins, which had not been found by other extraction methods, were identified.  相似文献   
997.
998.
DNA-dependent protein kinase (DNA-PK) is part of the eukaryotic DNA double strand break repair pathway and as such is crucial for maintenance of genomic stability, as well as for V(D)J (variable-diversity-joining) recombination. The catalytic subunit of DNA-PK (DNA-PKcs) belongs to the phosphatidylinositol-3 (PI-3) kinase-like kinase (PIKK) superfamily and is comprised of approximately 4100 amino acids. We have used a novel repeat detection method to analyse this enormous protein and have identified two different types of helical repeat motifs in the N-terminal region of the sequence, as well as other previously unreported features in this repeat region. A comparison with the ATMs, ATRs, and TORs show that the features identified are likely to be conserved throughout the PIKK superfamily. Homology modelling of parts of the DNA-PKcs sequence has been undertaken and we have been able to fit the models to previously obtained electron microscopy data. This work provides an insight into the overall architecture of the DNA-PKcs protein and identifies regions of interest for further experimental studies.  相似文献   
999.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   
1000.
Bone morphogenetic proteins (BMPs) have multiple functions in the development and growth of skeletal and extraskeletal tissues. Therefore, BMPs may regulate the regeneration of periodontal tissue. To investigate this issue, we examined the effects of BMP-4, -5 and -6 on DNA synthesis and the expression of bone-related proteins in cultures of human periodontal ligament (HPL) cells. The expression of bone-related proteins was determined by Real-time polymerase chain reaction and enzyme linked immunosorbent assay in cultures of HPL cells. DNA synthesis was estimated by measuring bromoderoxyuridine incorporation. It was found that BMP-4, -5 and -6 enhanced DNA synthesis dose-dependently. BMP-4 and -5 increased the levels of osteopontin, BMP-2, alkaline phosphatase and core binding factor alpha 1 mRNAs. BMP-6 stimulated the expression of osteopontin, BMP-2, ALPase and osteoprotegerin. These findings show that BMP-4, -5 and -6 have different actions on the expression of bone-related proteins and may play a role in the regeneration of periodontal tissue by promoting cell proliferation and protein expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号