首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2657篇
  免费   155篇
  国内免费   62篇
  2023年   39篇
  2022年   49篇
  2021年   70篇
  2020年   70篇
  2019年   75篇
  2018年   97篇
  2017年   64篇
  2016年   98篇
  2015年   104篇
  2014年   226篇
  2013年   206篇
  2012年   164篇
  2011年   181篇
  2010年   117篇
  2009年   124篇
  2008年   164篇
  2007年   116篇
  2006年   131篇
  2005年   120篇
  2004年   123篇
  2003年   80篇
  2002年   65篇
  2001年   43篇
  2000年   36篇
  1999年   31篇
  1998年   31篇
  1997年   14篇
  1996年   18篇
  1995年   14篇
  1994年   17篇
  1993年   17篇
  1992年   8篇
  1991年   22篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1987年   16篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1966年   3篇
  1963年   3篇
排序方式: 共有2874条查询结果,搜索用时 156 毫秒
81.
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved “CAAX” box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal “insert” domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh−/− mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh−/− T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.  相似文献   
82.
The hERG (human ether-a-go-go-related gene) encodes the α subunit of the rapidly activating delayed rectifier potassium channel (IKr). Dysfunction of hERG channels due to mutations or certain medications causes long QT syndrome, which can lead to fatal ventricular arrhythmias or sudden death. Although the abundance of hERG in the plasma membrane is a key determinant of hERG functionality, the mechanisms underlying its regulation are not well understood. In the present study, we demonstrated that overexpression of the stress-responsive serum- and glucocorticoid-inducible kinase (SGK) isoforms SGK1 and SGK3 increased the current and expression level of the membrane-localized mature proteins of hERG channels stably expressed in HEK 293 (hERG-HEK) cells. Furthermore, the synthetic glucocorticoid, dexamethasone, increased the current and abundance of mature ERG proteins in both hERG-HEK cells and neonatal cardiac myocytes through the enhancement of SGK1 but not SGK3 expression. We have previously shown that mature hERG channels are degraded by ubiquitin ligase Nedd4-2 via enhanced channel ubiquitination. Here, we showed that SGK1 or SGK3 overexpression increased Nedd4-2 phosphorylation, which is known to inhibit Nedd4-2 activity. Nonetheless, disruption of the Nedd4-2 binding site in hERG channels did not eliminate the SGK-induced increase in hERG expression. Additional disruption of Rab11 proteins led to a complete elimination of SGK-mediated increase in hERG expression. These results show that SGK enhances the expression level of mature hERG channels by inhibiting Nedd4-2 as well as by promoting Rab11-mediated hERG recycling.  相似文献   
83.
The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein β2-microglobulin (β2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aβ2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aβ2m. From analysis of the NMR spectra collected at various R3Aβ2m to αB-crystallin molar subunit ratios, it is concluded that the structured β-sheet core and the apical loops of R3Aβ2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type β2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type β2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated β2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing β2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation.  相似文献   
84.
JARID1B (also known as KDM5B or PLU1) is a member of the JARID1 family of histone lysine demethylases responsible for the demethylation of trimethylated lysine 27 in histone H3 (H3K4me3), a mark for actively transcribed genes. JARID1B is overexpressed in several cancers, including breast cancer, prostate cancer, and lung cancer. In addition, JARID1B is required for mammary tumor formation in syngeneic or xenograft mouse models. JARID1B-expressing melanoma cells are associated with increased self-renewal character. Therefore, JARID1B represents an attractive target for cancer therapy. Here we characterized JARID1B using a homogeneous luminescence-based demethylase assay. We then conducted a high throughput screen of over 15,000 small molecules to identify inhibitors of JARID1B. From this screen, we identified several known JmjC histone demethylase inhibitors, including 2,4-pyridinedicarboxylic acid and catechols. More importantly, we identified several novel inhibitors, including 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT), which inhibits JARID1B with an IC50 of about 3 μm in vitro. Consistent with this, PBIT treatment inhibited removal of H3K4me3 by JARID1B in cells. Furthermore, this compound inhibited proliferation of cells expressing higher levels of JARID1B. These results suggest that this novel small molecule inhibitor is a lead compound that can be further optimized for cancer therapy.  相似文献   
85.
Small heat shock proteins (sHSPs), as ubiquitous molecular chaperones found in all forms of life, are known to be able to protect cells against stresses and suppress the aggregation of a variety of model substrate proteins under in vitro conditions. Nevertheless, it is poorly understood what natural substrate proteins are protected by sHSPs in living cells. Here, by using a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we identified a total of 95 and 54 natural substrate proteins of IbpB (an sHSP from Escherichia coli) in living cells with and without heat shock, respectively. Functional profiling of these proteins (110 in total) suggests that IbpB, although binding to a wide range of cellular proteins, has a remarkable substrate preference for translation-related proteins (e.g. ribosomal proteins and amino-acyl tRNA synthetases) and moderate preference for metabolic enzymes. Furthermore, these two classes of proteins were found to be more prone to aggregation and/or inactivation in cells lacking IbpB under stress conditions (e.g. heat shock). Together, our in vivo data offer novel insights into the chaperone function of IbpB, or sHSPs in general, and suggest that the preferential protection on the protein synthesis machine and metabolic enzymes may dominantly contribute to the well known protective effect of sHSPs on cell survival against stresses.  相似文献   
86.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   
87.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   
88.
MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5′-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx to form the putative transition state analog, GDP·AlF4. The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.  相似文献   
89.
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.  相似文献   
90.
Glioblastoma (GB) is the highest grade of primary adult brain tumors, characterized by a poorly defined and highly invasive cell population. Importantly, these invading cells are attributed with having a decreased sensitivity to radiation and chemotherapy. TNF-like weak inducer of apoptosis (TWEAK)-Fn14 ligand-receptor signaling is one mechanism in GB that promotes cell invasiveness and survival and is dependent upon the activity of multiple Rho GTPases, including Rac1. Here we report that Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF), a RhoG-specific guanine nucleotide exchange factor, is overexpressed in GB tumors and promotes TWEAK-Fn14-mediated glioma invasion. Importantly, levels of SGEF expression in GB tumors inversely correlate with patient survival. SGEF mRNA expression is increased in GB cells at the invasive rim relative to those in the tumor core, and knockdown of SGEF expression by shRNA decreases glioma cell migration in vitro and invasion ex vivo. Furthermore, we showed that, upon TWEAK stimulation, SGEF is recruited to the Fn14 cytoplasmic tail via TRAF2. Mutation of the Fn14-TRAF domain site or depletion of TNF receptor-associated factor 2 (TRAF2) expression by siRNA oligonucleotides blocked SGEF recruitment to Fn14 and inhibited SGEF activity and subsequent GB cell migration. We also showed that knockdown of either SGEF or RhoG diminished TWEAK activation of Rac1 and subsequent lamellipodia formation. Together, these results indicate that SGEF-RhoG is an important downstream regulator of TWEAK-Fn14-driven GB cell migration and invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号