首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2665篇
  免费   156篇
  国内免费   62篇
  2883篇
  2023年   42篇
  2022年   52篇
  2021年   70篇
  2020年   70篇
  2019年   75篇
  2018年   97篇
  2017年   65篇
  2016年   98篇
  2015年   104篇
  2014年   226篇
  2013年   206篇
  2012年   164篇
  2011年   181篇
  2010年   117篇
  2009年   124篇
  2008年   164篇
  2007年   116篇
  2006年   131篇
  2005年   120篇
  2004年   123篇
  2003年   80篇
  2002年   65篇
  2001年   43篇
  2000年   36篇
  1999年   31篇
  1998年   31篇
  1997年   14篇
  1996年   18篇
  1995年   14篇
  1994年   17篇
  1993年   17篇
  1992年   8篇
  1991年   22篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1987年   16篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1966年   3篇
  1963年   3篇
排序方式: 共有2883条查询结果,搜索用时 15 毫秒
141.
极小种群野生植物坡垒(Hopea hainanensis)曾经是热带低地雨林的优势种, 但由于商业采伐和刀耕火种等严重人类干扰及自然更新困难, 致使其种群数量急剧下降到最小可存活的界限, 急需开展种群的拯救恢复工作。而对于坡垒生境适宜性及更新限制的了解, 是进行种群保护及恢复的基础。本文在对野生坡垒种群及其生境因子调查测定的基础上, 分析了生物与非生物生境特征及其对坡垒种群更新幼苗多度的影响。结果表明: 坡垒种群从幼苗至幼树阶段存在着严重的增补限制。坡度小、土壤含水量和有效磷含量高、母株胸径和冠幅较大、伴生种胸高断面积中等的环境是坡垒幼苗较为适宜的生境, 且坡垒幼苗多度与坡度及土壤pH值显著负相关, 与土壤含水量及土壤全磷含量显著正相关。这些研究结果为极小种群野生植物坡垒的就地保护与种群复壮提供了科学依据。  相似文献   
142.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
143.
Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.  相似文献   
144.
145.
Summary The cell wall protein fromAcetabularia has a non-random structure in aqueous solution at pH 5.3, as determined on the basis of intrinsic viscosity, sedimentation velocity and small angle X-ray scattering experiments. This non-random structure is stable in a pH range of 4.5–6.8, as observed on the basis of circular dichroism and viscosity measurements, supporting that the cell wall protein has a specific folded structure. All hydrodynamic measurements, including small angle X-ray scattering in solution, in this pH range are consistent with a prolate ellipsoid model for the shape of this protein, with overall dimensions ofc=86.0 Å,b=7.0 Å, anda=7.5 Å, and with a radius of gyration ofR=39.5 Å. The possibility of a coiled shape was investigated using a worm-like chain model, but it was inconsistent with the experimental data. Instead, a filled particle with uniform density which is equivalent in the scattering behavior is proposed. By a comparison of the observed radius of gyration, Rg=39.5 Å, and the radius of gyration of the cross section,R c =7.5 Å, we were able to describe the cell wall protein in terms of a prolate ellipsoid of revolution. Comparisons of the experimental scattering curve, plotted as logl (h) versus logh, with the corresponding plots of normalized intensities, calculated for particles of particular shape and various axial ratios indicate a very asymmetric shape for the cell wall protein fromAcetabularia.This research was supported by a grant of the Deutsche Forschungsgemeinschaft.  相似文献   
146.
147.
Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.  相似文献   
148.
通过构建东亚三角涡虫(Dujesia japonica)cDNA文库,随机挑选重组阳性克隆进行测序,对部分序列进行引物步移法测序,获得1个三角涡虫新基因——Rab蛋白基因(DjR),涡虫Rab蛋白cDNA全长2 141 bp,开放性阅读框(ORF)621bp,编码206个氨基酸,相对分子量为23.1 kD,等电点6.59,属亲水性蛋白,主要定位于细胞质中,在氨基酸第20和21位之间有信号肽剪切位点。有8个磷酸化位点。含有小G蛋白家族5个保守的鸟苷酸结合区域。同源性比较分析结果表明,其碱基序列与已经报道的其他23个物种的相似性为53%-90%,且符合种属之间的进化关系。  相似文献   
149.
An increasing number of studies support the hypothesis that smaller populations face a higher risk of extinction, and declining population sizes are therefore one of the focal points in plant conservation. In small populations, loss of genetic diversity is often related to reduced reproductive fitness. For the rare Dictamnus albus in Central Germany, an earlier study had already confirmed a significant correlation between population size and genetic diversity. In order to assess whether these variables correlate with fitness components, plant height; flower, fruit and seed production; and germination were studied in a total of 11 populations of different size. In the seven populations that were sampled over two consecutive years, differences among populations and among years were tested using a Two-Way ANOVA. Co-linearity among variables was assessed using principal component analysis (PCA), followed by calculating correlations between ordination axes and both population size and genetic diversity. Plant height and flower number were uncorrelated to the other variables and, together with germination, did not show any correlation to either population size or genetic diversity. However, both size and genetic diversity of populations correlated significantly with other PCA axes that reflected reproductive components such as fruit number, seed number, seed fruit ratio, and seed mass. Our results support the idea that reproduction is hampered in small populations and raise concerns over the loss of genetic diversity in D. albus.  相似文献   
150.
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, but the mechanism by which this occurs is unknown. Src suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after cell adhesion and that SSeCKS translocated from the membrane to the cytosol during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we show that RPMVEC cells in which SSeCKS expression was inhibited reduce adhesion and spread on LN through blocking the formation of actin stress fibers and focal adhesions. These results demonstrated SSeCKS modulate endothelial cells adhesion and spreading by reorganization of the actin cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号