首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   56篇
  国内免费   37篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   18篇
  2018年   33篇
  2017年   19篇
  2016年   15篇
  2015年   16篇
  2014年   66篇
  2013年   69篇
  2012年   59篇
  2011年   84篇
  2010年   54篇
  2009年   58篇
  2008年   62篇
  2007年   51篇
  2006年   37篇
  2005年   36篇
  2004年   28篇
  2003年   27篇
  2002年   22篇
  2001年   30篇
  2000年   18篇
  1999年   26篇
  1998年   16篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1992年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有897条查询结果,搜索用时 31 毫秒
11.
12.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
13.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   
14.
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.  相似文献   
15.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
16.
17.
18.
To date, five human metabotropic glutamate (mGlu) 1 receptor splice variants (1a, 1b, 1d, 1f, and 1g) have been described, all of which involve alternative C-terminal splicing. mGlu1a receptor contains a long C-terminal domain (341 amino acids), which has been shown to scaffold with several proteins and contribute to the structure of the post-synaptic density. However, several shorter mGlu1 receptor splice variants lack the sequence required for these interactions, and no major functional differences between these short splice variants have been described. By using RT-PCR we have shown that two human melanoma cell lines express both mGlu1a and mGlu1b receptors. In addition, using 3′RACE, we identified three previously unknown mGlu1 receptor mRNAs. Two differ in the length of their 3′ untranslated region (UTR), and encode the same predicted protein as mGlu1g receptor—the shortest of all mGlu1 receptor splice variants. The third mRNA, named mGlu1h, encodes a predicted C-terminal splice variant of 10 additional amino acids. mGlu1h mRNA was observed in two different melanoma cell lines and is overexpressed, compared with melanoma precursor cells, melanocytes. Most importantly, this new splice variant, mGlu1h receptor, is encoded by two previously unidentified exons located within the human GRM1 gene. Additionally, these new exons are found exclusively within the GRM1 genes of higher primates and are highly conserved. Therefore, we hypothesize that mGlu1h receptors play a distinct role in primate glutamatergic signaling.  相似文献   
19.
This study aimed to elucidate the genetics of the adult root system in elite Chinese hybrid rice. Several adult root traits in a recombinant inbred line (RIL) population of Xieyou 9308 and two backcross F1 (BCF1) populations derived from the RILs were phenotyped under hydroponic culture at heading stage for quantitative trait locus (QTL) mapping and other statistical analysis. There a total of eight QTLs detected for the root traits. Among of them, a pleiotropic QTL was repeatedly flanked by RM180 and RM5436 on the short arm of chromosome 7 for multiple traits across RILs and its BCF1 populations, accounting for 6.88% to 25.26% of the phenotypic variances. Only additive/dominant QTLs were detected for the root traits. These results can serve as a foundation for facilitating future cloning and molecular breeding.  相似文献   
20.
The interaction of (−)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (−)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca2+ influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50 = 3.86 ± 0.49 and 1.92 ± 0.48 μM, respectively, (b) binds to the [3H]TCP site with ∼13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [3H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6′ and 13′ in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9′ is the minimum structural component for (−)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (−)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号