首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7981篇
  免费   321篇
  国内免费   229篇
  8531篇
  2024年   13篇
  2023年   81篇
  2022年   108篇
  2021年   169篇
  2020年   199篇
  2019年   300篇
  2018年   286篇
  2017年   173篇
  2016年   151篇
  2015年   244篇
  2014年   529篇
  2013年   696篇
  2012年   328篇
  2011年   620篇
  2010年   346篇
  2009年   374篇
  2008年   402篇
  2007年   379篇
  2006年   337篇
  2005年   293篇
  2004年   235篇
  2003年   217篇
  2002年   172篇
  2001年   118篇
  2000年   121篇
  1999年   110篇
  1998年   93篇
  1997年   93篇
  1996年   105篇
  1995年   93篇
  1994年   97篇
  1993年   96篇
  1992年   81篇
  1991年   68篇
  1990年   82篇
  1989年   54篇
  1988年   64篇
  1987年   48篇
  1986年   54篇
  1985年   66篇
  1984年   85篇
  1983年   40篇
  1982年   56篇
  1981年   60篇
  1980年   42篇
  1979年   43篇
  1978年   29篇
  1977年   19篇
  1976年   18篇
  1973年   10篇
排序方式: 共有8531条查询结果,搜索用时 0 毫秒
71.
Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.  相似文献   
72.
目的:利用逆转录病毒载体pBaba-puro构建携带ROS1基因及其CD74-ROS1融合基因的重组载体pBaba-puro-ROS1,pBaba-puro-CD74-ROS1。方法:设计与合成引物,提取组织标本RNA,反转录和PCR扩增,经BamHI和TaqI双酶切,琼脂糖凝胶电泳,切胶回收进行连接转化,并再次酶切鉴定,测序分析。结果:成功构建携带ROS1基因及其CD74-ROS1融合基因的重组载体pBaba-puro-ROS1,pBaba-puro-CD74-ROS1,并通过双酶切与测序鉴定。结论:利用逆转录病毒载体基因重组技术能够成功构建出携带相应基因的逆转录病毒,可用于后续研究。  相似文献   
73.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015–15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg9 to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   
74.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   
75.
Although increasing evidence shows the nutritional benefits of calcium fructoborate (CF) on animals and humans, its action mechanism has not been clearly identified. The present study aims to investigate the possible antioxidant function of CF. Based on its efficiency in skin wound healing, the authors tested whether CF possesses antioxidant properties on human keratinocytes cultures, in a complete serum-free medium (KMK-2; Sigma). The cells treated with CF (0–450 nmol/culture medium) were exposed to exogenous 100 μmol of hydrogen peroxide to mimic the oxidative stress. The changes in general cell oxidant production evaluated with dihydrorhodamine-123 showed that the intracellular reactive oxygen species (ROS) were markedly reduced by preincubation with CF. The maximum antioxidant activity was notice at 90 nmol CF. To assess the reactivity of CF on ROS, we analyzed its ability to inhibit the superoxide-dependent auto-oxidation of pyrogallol. The CF inhibited the pyrogallol auto-oxidation depending on time and concentration, which suggests its possible role as a superoxide radical scavenger. Taken together, our results indicate that CF has antioxidant activity, which could have clinical significance in protecting cells from oxidant-induced injury. A hypothetic mechanism for the antioxidant activity of CF is proposed.  相似文献   
76.
Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62 kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.  相似文献   
77.
Microculture of single protoplasts of Brassica napus   总被引:1,自引:0,他引:1  
Protoplasts of Brassica napus L. were cultured individually in a microdroplet system using a synthetic medium with survival rates of more than 70% and division frequencies of up to 65%. Microcallus formation occurred at frequencies of up to 50%. Factors affecting the survival and division of individually cultured protoplasts, such as composition and volume of culture medium, pH, buffering system, osmolarity and genotype, were analyzed.  相似文献   
78.
Orthologs of the Drosophila gap gene hunchback have been isolated so far only in protostomes. Phylogenetic analysis of recently available genomic data allowed us to confirm that hunchback genes are widely found in protostomes (both lophotrochozoans and ecdysozoans). In contrast, no unequivocal hunchback gene can be found in the genomes of deuterostomes and non-bilaterians. We cloned hunchback in the marine polychaete annelid Platynereis dumerilii and analysed its expression during development. In this species, hunchback displays an expression pattern indicative of a role in mesoderm formation and neurogenesis, and similar to the expression found for hunchback genes in arthropods. These data suggest altogether that these functions are ancestral to protostomes.Pierre Kerner and Fabiola Zelada González contributed equally to this work.  相似文献   
79.
Abstract The process of colony formation by bacteria from grassland soil sampled in April, July and September was simulated by a colony-forming curve (CFC). The CFC was a super-imposition of several component curves (cCFC) given theoretically by the first order reaction (FOR) model [3,6]. The pattern of FOR model curves was not influenced by the time of sampling and four cCFCs were always recognized during an incubation period of 160 h. It was considered that the CFC describes an inherent property of the bacterial population of the field. Bacterial isolates were obtained from colonies produced in each of four cCFCs on agar plates. Isolates corresponding to one cCFC were classified as one group. The bacterial isolates were characterized by morphological and physiological tests and subsequently clustered. Few oligotrophic bacteria were obtained among bacteria which produced visible colonies within 63 h of incubation time. On the other hand, approx. 50% of bacteria which produced v colonies after 63 h were oligotrophic bacteria. The time required for the appearance of the first colony, t r of the FOR model, was very similar in the isolates belonging to one group. A close linear relationship was observed between t r value and doubling time of isolates.  相似文献   
80.
目的:观察黑木耳多糖(APP)对急性脑缺血大鼠的保护作用并探讨其相关机制。方法:成年雄性SD大鼠给予不同浓度的AAP灌胃20d,每天1次,腹腔注射银杏叶提取物(ginkgo biloba extract,EGb671)作为阳性对照,20d后实施右侧大脑中动脉栓塞(MCAO)建立局灶性脑缺血模型。MCAO60min后复灌,复灌24h后进行Longa神经功能损伤评分,并用2,3,5-氯化三苯基四氮唑(TTC)染色法测定脑梗死面积。复灌48h后用TUNEL免疫组化检测神经元凋亡,测定脑组织线粒体内活性氧簇(ROS)的生成量判断氧化应激水平。结果:黑木耳多糖能降低神经功能损伤评分,减小脑梗死面积,减少神经元凋亡,并且能够使缺血复灌脑组织线粒体ROS生成显著减少。高剂量AAP组的凋亡神经元数量、ROS生成量和阳性对照组相比有显著性差异。结论:黑木耳多糖能够对抗大鼠的局灶性脑缺血损伤,其保护作用和减轻氧化应激水平有关,并优于银杏叶提取物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号