首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   22篇
  国内免费   10篇
  2024年   1篇
  2023年   10篇
  2022年   10篇
  2021年   20篇
  2020年   19篇
  2019年   29篇
  2018年   18篇
  2017年   7篇
  2016年   14篇
  2015年   20篇
  2014年   26篇
  2013年   31篇
  2012年   19篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2000年   1篇
  1995年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
21.
Melanoma development and progression: a conspiracy between tumor and host   总被引:8,自引:0,他引:8  
While a genome-centric paradigm in human cancer development was useful for the understanding of some malignancies such as leukemias, causative molecular defects intrinsic to melanocytes have not been defined in the majority of human melanomas. Recent work, however, has shown that regulatory signals governing melanocytic cell growth and differentiation may originate from the surrounding host cells either directly through physical contact or indirectly through soluble factors and extracellular matrix molecules. In this review, we present experimental systems useful for dissecting melanoma-host interactions and highlight evidence that the tumor microenvironment contributes to the oncogenic process. Thus, melanomagenesis is not merely an act of a single outlaw but a conspiracy orchestrated by multiple partners in the neighborhood who come into play in a precise spatiotemporal order. Defining intercellular molecular dialogues in human skin promises to provide key information for the development of novel treatment strategies that target the functional unit of stroma and tumor.  相似文献   
22.
To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  相似文献   
23.
24.
25.
早幼粒白血病蛋白核体(promyelocytic leukaemia nuclear bodies,PMLNBs)是哺乳动物细胞中普遍存在的一种亚核结构,广泛参与如转录调节、基因组稳定性维持、抗病毒、细胞凋亡、肿瘤抑制等一系列的生物学事件.SUMO(smallubiquitinmodifier)修饰是蛋白质翻译后修饰领域中的研究热点,SUMO修饰对PML核体的形成与降解都发挥着重要作用.近年来研究发现,人的E3泛素连接酶RNF4(RING finger protein4),可促进依赖SUMO-2/3修饰的PML核体的泛素化连接,并且ATO(三氧化二砷)可加速其对PML核体的降解.荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术可完全应用于活细胞内PML核体和SUMO蛋白之间在时间和空间上的精确互作.因此,更深入地研究PML核体形成和降解的机理以及在这个过程中重要蛋白质之间的相互作用具有重要而深远的意义.  相似文献   
26.
Domestication and crop physiology: roots of green-revolution wheat   总被引:7,自引:1,他引:6  
Waines JG  Ehdaie B 《Annals of botany》2007,100(5):991-998
BACKGROUND AND AIMS: Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and 'Veery'-type wheat containing the 1RS translocation from rye. METHODS: Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. KEY RESULTS: The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F(2) of 'Norin 10' and 'Brevor', further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat-rye translocation in 'Kavkaz' for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. CONCLUSIONS: Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters.  相似文献   
27.
During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.  相似文献   
28.
Maintaining genomic integrity is critical to avoid life-threatening disorders, such as premature aging, neurodegeneration and cancer. A multiprotein cascade operates at sites of DNA double-strand breaks (DSBs) to recognize, signal and repair damage. RNF168 (ring-finger nuclear factor) contributes to this emerging pathway of several E3 ubiquitin ligases that perform sequential ubiquitylations on damaged chromosomes, chromatin modifications essential for aggregation of repair complexes at the DSB sites. Here, we report the clinical and cellular phenotypes associated with a newly identified homozygous nonsense mutation in the RNF168 gene of a patient with a syndrome mimicking ataxia-telangiectasia. The mutation eliminated both of RNF168's ubiquitin-binding motifs, thus blocking progression of the ubiquitylation cascade and retention of repair proteins including tumor suppressors 53BP1 and BRCA1 at DSB sites, consistent with the observed defective DNA damage checkpoints/repair and pronounced radiosensitivity. Rapid screening for RNF168 pathway deficiency was achieved by scoring patients' lymphoblastoid cells for irradiation-induced nuclear foci containing 53BP1, a robust assay we propose for future diagnostic applications. The formation of radiation-induced DSB repair foci was rescued by ectopic expression of wild-type RNF168 in patient's cells, further causally linking the RNF168 mutation with the pathology. Clinically, this novel syndrome featured ataxia, telangiectasia, elevated alphafetoprotein, immunodeficiency, microcephaly and pulmonary failure and has implications for the differential diagnosis of autosomal recessive ataxias.  相似文献   
29.
Trypanosoma cruzi is the etiological agent of Chagas' disease, a chronic illness characterized by progressive cardiomyopathy and/or denervation of the digestive tract. The parasite surface is covered with glycoconjugates, such as mucin-type glycoproteins and glycoinositolphospholipids (GIPLs), whose glycans are rich in galactopyranose (Galp) and/or galactofuranose (Galf) residues. These molecules have been implicated in attachment of the parasite to and invasion of mammalian cells and in modulation of the host immune responses during infection. In T. cruzi, galactose (Gal) biosynthesis depends on the conversion of uridine diphosphate (UDP)-glucose (UDP-Glc) into UDP-Gal by an NAD-dependent reduction catalyzed by UDP-Gal 4-epimerase. Phosphoglucomutase (PGM) is a key enzyme in this metabolic pathway catalyzing the interconversion of Glc-6-phosphate (Glc-6-P) and Glc-1-P which is then converted into UDP-Glc. We here report the cloning of T. cruzi PGM, encoding T. cruzi PGM, and the heterologous expression of a functional enzyme in Saccharomyces cerevisiae. T. cruzi PGM is a single copy gene encoding a predicted protein sharing 61% amino acid identity with Leishmania major PGM and 43% with the yeast enzyme. The 59-trans-splicing site of PGM RNA was mapped to a region located at 18 base pairs upstream of the start codon. Expression of T. cruzi PGM in a S. cerevisiae null mutant-lacking genes encoding both isoforms of PGM (pgm1Delta/pgm2Delta) rescued the lethal phenotype induced upon cell growth on Gal as sole carbon source.  相似文献   
30.
Scrapie is the transmissible spongiform encephalopathy (TSE) of sheep and goats, and scrapie eradication in sheep is based in part on strong genetic resistance to classical scrapie. Goats may serve as a scrapie reservoir, and to date there has been no experimental inoculation confirming strong genetic resistance in goats. Two prion protein variants (amino acid substitutions S146 and K222) in goats have been significantly underrepresented in scrapie cases though present in scrapie-exposed flocks, and have demonstrated low cell-free protein conversion efficiency to the disease form (PrP(D)). To test degree of genetic resistance conferred in live animals with consistent exposure, we performed the first oral scrapie challenge of goats singly heterozygous for either PRNP S146 or K222. All N146-Q222 homozygotes became clinically scrapie positive by an average of 24months, but all S146 and K222 heterozygotes remain scrapie negative by both rectal biopsy and clinical signs at significantly longer incubation times (P<0.0001 for both comparisons). Recent reports indicate small numbers of S146 and K222 heterozygous goats have become naturally infected with scrapie, suggesting these alleles do not confer complete resistance in the heterozygous state but rather extend incubation. The oral challenge results presented here confirm extended incubation observed in a recent intracerebral challenge of K222 heterozygotes, and to our knowledge provide the first demonstration of extended incubation in S146 heterozygotes. These results suggest longer relevant trace-back histories in scrapie-eradication programs for animals bearing these alleles and strengthen the case for additional challenge experiments in both homozygotes to assess potential scrapie resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号