首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31711篇
  免费   1720篇
  国内免费   1535篇
  2023年   451篇
  2022年   737篇
  2021年   1003篇
  2020年   932篇
  2019年   1365篇
  2018年   1119篇
  2017年   719篇
  2016年   763篇
  2015年   1041篇
  2014年   2182篇
  2013年   2616篇
  2012年   1665篇
  2011年   2048篇
  2010年   1550篇
  2009年   1473篇
  2008年   1656篇
  2007年   1623篇
  2006年   1366篇
  2005年   1295篇
  2004年   1104篇
  2003年   960篇
  2002年   839篇
  2001年   507篇
  2000年   474篇
  1999年   443篇
  1998年   422篇
  1997年   325篇
  1996年   347篇
  1995年   350篇
  1994年   380篇
  1993年   258篇
  1992年   290篇
  1991年   228篇
  1990年   195篇
  1989年   165篇
  1988年   136篇
  1987年   134篇
  1986年   129篇
  1985年   208篇
  1984年   221篇
  1983年   181篇
  1982年   196篇
  1981年   153篇
  1980年   153篇
  1979年   122篇
  1978年   101篇
  1977年   78篇
  1976年   71篇
  1974年   47篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A staining method is described using thionin, for undecalcified deacrylated bone sections. RNA is stained purplish violet, allowing still active osteoblasts to be distinguished from lining cells. Staining intensity of mineralized bone is related to the degree of mineralization. Mineralizing fronts and cement lines are visualized clearly. Lamellae show an alternate pattern. Histomorphometric parameters such as osteon thickness and interstitial bone thickness can be measured without using polarized light. The mineralizing front can be assessed and expressed as a percentage of the osteoblast-covered interface between osteoid and mineralized bone. The stain is also useful for qualitative assessment of metabolic bone disease. Thionin stained sections can be kept for at least one year when stored hi the dark at 7 C.  相似文献   
52.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
53.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   
54.
Han Zhang 《Autophagy》2017,13(3):627-628
Macroautophagy/autophagy is a well-established process involved in maintaining cellular homeostasis, but its role in cancer is complex and even controversial. Many studies have reported a correlative relationship between increased autophagy and evolving cancer cells under stress conditions such as nutrient or oxygen deprivation; however, there has been a lack of a plausible mechanistic link to properly target the autophagy process in the context of this microenvironment. We recently unveiled a positive regulatory loop involving TGM2 (transglutaminase 2)-NFKB/NF-κB signaling, IL6 and autophagy in cancer using mantle cell lymphoma (MCL) as a model system. These pathways are functionally connected to each other, thereby promoting malignant B cell survival and leading to enhanced lymphoma progression both in mice and in patients. Disruption of this network could provide an opportunity to increase the efficacies of current therapies and to reduce MCL drug resistance.  相似文献   
55.
56.
57.
Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.  相似文献   
58.
59.
Two blood group B active glycosphingolipids (B-I and B-II) previously isolated and highly purified from human B erythrocytes [21] were analysed first by degradation with α-D-galactosidase from coffee beans, α-L-fucosidase from bovine kidney and with 0,1 N trichloracetic acid; the native B-glycolipids as well as their degradation products were then investigated by methylation analysis with combined gas chromatography-mass spectrometry, by thin layer chromatography, twodimensional immunodiffusion and by the hemagglutination inhibition technique. Together with the results obtained by mass spectrometry of permethylated glycolipids [26] the following structures were elucidated: α-D-galactopyranosyl-(1 → 3)-[α-L-fucopyranosyl-(1 → 2)]-D-galactopyranosyl-(1 → 4)-N-acetyl-D-glucosaminosyl-(1 → 3)-D-galactopyranosyl-(1 → 4)-D-glucopyranosyl-(1 → 1)-ceramide for the B-I glycosphingolipid and α-D-galactopyranosyl-(1 → 3)-[α-L-fucopyranosyl-(1 → 2)]-D-galactopyranosyl-(1 → 4)-N-acetyl-D-glucosaminosyl-(1 → 3)-D-galactopyranosyl-(1 → 4)-N-acetyl-D-glucosaminosyl-(1 → 3)-D-galactopyranosyl-(1 → 4)-D-glucopyranosyl-(1 → 1)-ceramide for the B-II glycosphingolipid. A H active glycolipid fraction from B erythrocytes further purified by thin layer chromatography was also investigated by methylation analysis. The pattern of its partially methylated alditol acetates was essentially the same as that of the α-galactosidase treated and permethylated B-I glycolipid. It also exhibited strongly precipitating and hemagglutination inhibiting H properties as well as the two α-galactosidase treated B-I and B-II glycosphingolipids. Based upon these data the following tentative structure was proposed: α-L-fucopyranosyl-(1 → 2)-D-galactopyranosyl-(1 → 4)-N-acetyl-D-glucosaminosyl-(1 → 3)-D-galactopyranosyl-(1 → 4)-D-glucopyranosyl-(1 → 1)-ceramide. Gas chromatographic analysis revealed sphingosine and lignoceric, nervonic and behenic acids to be the main components of the ceramide residues of the three glycosphingolipids. From the data presented the H active substance very probably can be regarded as the immediate precursor of the B-I glycosphingolipid from human B erythrocyte membranes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号