首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14606篇
  免费   828篇
  国内免费   740篇
  2023年   243篇
  2022年   401篇
  2021年   543篇
  2020年   479篇
  2019年   701篇
  2018年   539篇
  2017年   341篇
  2016年   374篇
  2015年   513篇
  2014年   1049篇
  2013年   1123篇
  2012年   775篇
  2011年   932篇
  2010年   790篇
  2009年   644篇
  2008年   802篇
  2007年   734篇
  2006年   580篇
  2005年   550篇
  2004年   489篇
  2003年   396篇
  2002年   355篇
  2001年   190篇
  2000年   182篇
  1999年   192篇
  1998年   182篇
  1997年   146篇
  1996年   162篇
  1995年   172篇
  1994年   162篇
  1993年   106篇
  1992年   134篇
  1991年   93篇
  1990年   101篇
  1989年   85篇
  1988年   59篇
  1987年   59篇
  1986年   60篇
  1985年   81篇
  1984年   101篇
  1983年   91篇
  1982年   95篇
  1981年   53篇
  1980年   65篇
  1979年   55篇
  1978年   38篇
  1977年   36篇
  1976年   24篇
  1974年   21篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 79 毫秒
991.
992.
993.
Protein synthesis in fish has been previously correlated with RNA content. The present study investigates whether protein and RNA synthesis rates are similarly related. Protein and RNA synthesis rates were determined from 3H-phenylalanine and 3H-uridine incorporation, respectively, and expressed as % · day−1 and half-lives, respectively. Three fibroblast cell lines were used: BF-2, RTP, CHSE 214, which are derived from the bluegill, rainbow trout and Chinook salmon, respectively. These cells contained similar RNA concentrations (∼175 μg RNA · mg−1 cell protein). Therefore differences in protein synthesis rates, BF-2 (31.3 ± 1.8)>RTP (25.1 ± 1.7)>CHSE 214 (17.6 ± 1.1), were attributable to RNA translational efficiency. The most translationally efficient RNA (BF-2 cells), 1.8 mg protein synthesised · μg−1 RNA · day−1, corresponded to the lowest RNA half-life, 75.4 ± 6.4 h. Translationally efficient RNA was also energetically efficient with BF-2 cells exploiting the least costly route of nucleotide supply (i.e. exogenous salvage) 3.5–6.0 times more than the least translationally efficient RNA (CHSE 214 cells). These data suggest that differential nucleotide supply, between intracellular synthesis and exogenous salvage, constitutes the area of pre-translational flexibility exploited to maintain RNA synthesis as a fixed energetic cost component of protein synthesis. Accepted: 12 November 1999  相似文献   
994.
995.
996.
The nearly complete nuclear large subunit ribosomal RNA (LSU rRNA) gene in corals was amplified by primers designed from polymerase chain reaction (PCR) strategies. The motif of the putative 3′-terminus of the LSU rRNA gene was sequenced and identified from intergenic spacer (IGS) clones obtained by PCR using universal primers designed for corals. The 3′-end primer was constructed in tandem with the universal 5′-end primer for the LSU rRNA gene. PCR fragments of 3500 bp were amplified for octocorals and non-Acropora scleractinian corals. More than 80% of the Acropora LSU rRNA gene (3000 bp) was successfully amplified by modification of the 5′-end of the IGS primer. Analysis of the 5′-end of LSU rDNA sequences, including the D1 and D2 divergent domains, indicates that the evolutionary rate of the LSU rDNA differs among these taxonomic groups of corals. The genus Acropora showed the highest divergence pattern in the LSU rRNA gene, and the presence of a long branch of the Acropora clade from the other scleractinian corals in the phylogenetic tree indicates that the evolutionary rate of Acropora LSU rDNA might have accelerated after divergence from the common ancestor of scleractinian corals. Received February 17, 2000; accepted June 12, 2000.  相似文献   
997.
998.
999.
The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development as a regulator of numerous biological processes. Its biosynthetic pathways have been studied for decades. Recent genetic and in vitro labeling evidence indicates that IAA in Arabidopsis thaliana and other plants is primarily synthesized from a precursor that is an intermediate in the tryptophan (Trp) biosynthetic pathway. To determine which intermediate(s) acts as the possible branchpoint for the Trp-independent IAA biosynthesis in plants, we took an in vivo approach by generating antisense indole-3-glycerol phosphate synthase (IGS) RNA transgenic plants and using available Arabidopsis Trp biosynthetic pathway mutants trp2-1 and trp3-1. Antisense transgenic plants display some auxin deficient-like phenotypes including small rosettes and reduced fertility. Protein gel blot analysis indicated that IGS expression was greatly reduced in the antisense lines. Quantitative analyses of IAA and Trp content in antisense IGS transgenic plants and Trp biosynthetic mutants revealed striking differences. Compared with wild-type plants, the Trp content in all the transgenic and mutant plants decreased significantly. However, total IAA levels were significantly decreased in antisense IGS transgenic plants, but remarkably increased in trp3-1 and trp2-1 plants. These results suggest that indole-3-glycerol phosphate (IGP) in the Arabidopsis Trp biosynthetic pathway serves as a branchpoint compound in the Trp-independent IAA de novo biosynthetic pathway.  相似文献   
1000.
The three taxa emerging at the base of the eukaryotic ribosomal RNA phylogenetic tree (Diplomonadida, Microspora, and Parabasalia) include a wide array of parasitic species. and some free-living organisms that appear to be derived from a parasitic ancestry. The basal position of these taxa, which lack mitochondria, has recently been questioned. I sequenced most of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis and a secondary structure model was reconstructed for the SSU rRNA. I conducted a RASA matrix analysis to identify, independently from tree reconstruction, putative long branch attraction effects in the data matrix. The results show that each of the basal clades and the euglenozoan clade act, indeed, as long branches and may have been engaged in a process of accelerated rate of evolution. A nucleotide signature analysis was conducted in the conserved regions for positions defining the three great domains of life (Eubacteria, Archea, and Eukaryota). For the three basal taxa, this analysis showed the presence of a significant number of different non-eukaryotic nucleotides. A precise study of the nature and location of these nucleotides led to conclusions supporting the results of the RASA analysis. Altogether, these findings suggest that the basal placement of these taxa in the SSU ribosomal RNA phylogenetic tree is artifactual, and flawed by long branch attraction effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号