首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14606篇
  免费   828篇
  国内免费   740篇
  2023年   243篇
  2022年   401篇
  2021年   543篇
  2020年   479篇
  2019年   701篇
  2018年   539篇
  2017年   341篇
  2016年   374篇
  2015年   513篇
  2014年   1049篇
  2013年   1123篇
  2012年   775篇
  2011年   932篇
  2010年   790篇
  2009年   644篇
  2008年   802篇
  2007年   734篇
  2006年   580篇
  2005年   550篇
  2004年   489篇
  2003年   396篇
  2002年   355篇
  2001年   190篇
  2000年   182篇
  1999年   192篇
  1998年   182篇
  1997年   146篇
  1996年   162篇
  1995年   172篇
  1994年   162篇
  1993年   106篇
  1992年   134篇
  1991年   93篇
  1990年   101篇
  1989年   85篇
  1988年   59篇
  1987年   59篇
  1986年   60篇
  1985年   81篇
  1984年   101篇
  1983年   91篇
  1982年   95篇
  1981年   53篇
  1980年   65篇
  1979年   55篇
  1978年   38篇
  1977年   36篇
  1976年   24篇
  1974年   21篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
For nearly 40 years functional studies of the mouse quaking gene (qkI) have focused on its role in the postnatal central nervous system during myelination. However, the homozygous lethality of a number of ENU-induced alleles reveals that quaking has a critical role in embryonic development prior to the start of myelination. In this article, we show that quaking has a previously unsuspected and essential role in blood vessel development. Interestingly, we found that quaking, a nonsecreted protein, is expressed in the yolk sac endoderm, adjacent to the mesodermal site of developing blood islands, where the differentiation of blood and endothelial cells first occurs. Antibodies against PE-CAM-1, TIE-2 and SM-alpha-actin reveal that embryos homozygous for the qk(k2) allele have defective yolk sac vascular remodeling and abnormal vessels in the embryo proper at midgestation, coinciding with the timing of embryonic death. However, these mutants exhibit normal expression of Nkx2.5 and alpha-sarcomeric actin, indicating that cardiac muscle differentiation was normal. Further, they had normal embryonic heart rates in culture, suggesting that cardiac function was not compromised at this stage of embryonic development. Together, these results suggest that quaking plays an essential role in vascular development and that the blood vessel defects are the cause of embryonic death.  相似文献   
952.
In a screen of nuclear genes that assist splicing of mitochondrial localized group II introns in yeast we isolated low-copy number suppressors of splicing and respiratory-deficient point mutants of intron aI5gamma, the last intron of the gene encoding cytochrome c oxidase subunit I. One of the genes found contains the open reading frame (ORF) YGL064c that has previously been proposed to encode a putative RNA helicase of the DEAD box family. Deletion of the ORF gives rise to 100% cytoplasmic petites, indicating that the protein plays an essential role in the mitochondrial RNA metabolism. Overexpression of YGL064c-GFP fusions clearly revealed a mitochondrial localization of the protein. The gene encodes the fourth putative RNA helicase of Saccharomyces cerevisiae implicated in a mitochondrial function and was therefore termed MRH4 (for mitochondrial RNA helicase).  相似文献   
953.
In eukaryotic cells members of the kinesin family mediate intracellular transport by carrying cellular cargo on microtubule tracks. The nematode Caenorhabditis elegans genome encodes 21 members of the kinesin family, which show significant homology to their mammalian orthologs. Based on motor domain sequence homology and placement of the motor domain in the protein, the C. elegans kinesins have been placed in eight distinct groups; members of which participate in embryonic development, protein transport, synaptic membrane vesicles movement and in the axonal growth. Among 21 kinesins, at least 11 play a central role in spindle movement and chromosomal segregation. Understanding the function of C. elegans kinesins and related proteins may help navigate through the intricacies of intracellular traffic in a simple animal.  相似文献   
954.
In order to study the phylogenetic relationships within the stramenopiles, and particularly among the heterokont algae, we have determined complete or nearly complete large-subunit ribosomal RNA sequences for different species of raphidophytes, phaeophytes, xanthophytes, chrysophytes, synurophytes and pinguiophytes. With the small- and large-subunit ribosomal RNA sequences of representatives for nearly all known groups of heterokont algae, phylogenetic trees were constructed from a concatenated alignment of both ribosomal RNAs, including more than 5,000 positions. By using different tree construction methods, inferred phylogenies showed phaeophytes and xanthophytes as sister taxa, as well as the pelagophytes and dictyochophytes, and the chrysophytes/synurophytes and eustigmatophytes. All these relationships are highly supported by bootstrap analysis. However, apart from these sister group relationships, very few other internodes are well resolved and most groups of heterokont algae seem to have diverged within a relatively short time frame.  相似文献   
955.
956.
Li H  Chen XY  Kong QY  Liu J 《Cell research》2002,12(2):117-121
The co-existence of multiple cell components in tissue samples is the main obstacle for precise molecular evaluation on defined cell types. Based on morphological examination, we developed an efficient approach for paralleled RNA and protein isolations from an identical histological region in frozen tissue section. The RNA and protein samples prepared were sufficient for RT-PCR and Western blot analyses, and the results obtained were well coincident each other as well as with the corresponding parameters revealed from immunohistochemical examinations. By this way, the sampling problem caused by cell-cross contamination can be largely avoided, committing the experimental data more specific to a denned cell type. These novel methods thus allow us to use single tissue block for a comprehensive study by integration of conventional cytological evaluations with nucleic acid and protein analyses.  相似文献   
957.
Until recently, the approach to understanding the molecular basis of complex syndromes such as cancer, coronary artery disease, and diabetes was to study the behavior of individual genes. However, it is generally recognized that expression of a number of genes is coordinated both spatially and temporally and that this coordination changes during the development and progression of diseases. Newly developed functional genomic approaches, such as serial analysis of gene expression (SAGE) and DNA microarrays have enabled researchers to determine the expression pattern of thousands of genes simultaneously. One attractive feature of SAGE compared to microarrays is its ability to quantify gene expression without prior sequence information or information about genes that are thought to be expressed. SAGE has been successfully applied to the gene expression profiling of a number of human diseases. In this review, we will first discuss SAGE technique and contrast it to microarray. We will then highlight new biological insights that have emerged from its application to the study of human diseases.  相似文献   
958.
Quantitation of GFP-fusion proteins in single living cells   总被引:9,自引:0,他引:9  
  相似文献   
959.
960.
Elongation of the primer 32pdA(pdA)8pA proceeds by thereaction of the 5-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in theformation of 40–50 mers using the 5-phosphorimidazolide of adenosine (ImpA) and 25–30 mers using the 5-phosphorimidazolide of uridine (ImpU). The limitation on thelengths of the chains formed is not due to the inhibitors formedsince the same chain lengths were formed using 2–3 times the amount of montmorillonite catalyst. The shorter oligomers formedby the addition of U monomers is not due to its greater rate ofdecomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are cappedat the 5-end to form, with ImpA,Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base inthe activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites ofthe 3, 5- and 2, 5-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life basedon RNA (the RNA world scenario) is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号