首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15285篇
  免费   812篇
  国内免费   765篇
  2023年   244篇
  2022年   365篇
  2021年   548篇
  2020年   485篇
  2019年   706篇
  2018年   542篇
  2017年   342篇
  2016年   369篇
  2015年   507篇
  2014年   1103篇
  2013年   1184篇
  2012年   865篇
  2011年   985篇
  2010年   808篇
  2009年   658篇
  2008年   805篇
  2007年   749篇
  2006年   581篇
  2005年   560篇
  2004年   494篇
  2003年   405篇
  2002年   371篇
  2001年   213篇
  2000年   191篇
  1999年   217篇
  1998年   196篇
  1997年   184篇
  1996年   194篇
  1995年   237篇
  1994年   216篇
  1993年   147篇
  1992年   171篇
  1991年   116篇
  1990年   108篇
  1989年   85篇
  1988年   59篇
  1987年   56篇
  1986年   58篇
  1985年   80篇
  1984年   102篇
  1983年   91篇
  1982年   96篇
  1981年   53篇
  1980年   65篇
  1979年   56篇
  1978年   38篇
  1977年   36篇
  1976年   24篇
  1974年   21篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
var1 Gene on the mitochondrial genome of Torulopsis glabrata   总被引:5,自引:0,他引:5  
We have cloned and sequenced a region of the Torulopsis glabrata mitochondrial genome homologous to the Saccharomyces cerevisiae var1 gene (var1Sc). An open reading frame that could encode a protein of 339 amino acids was found with 72.7% amino acid and 85.3% nucleotide sequence homology to the S. cerevisiae var1 gene. The T. glabrata gene (var1Tg) is transcribed yielding two stable RNAs, a more abundant 13.5 S RNA and a less abundant 18 S species. We have also identified a candidate for a T. glabrata var1 protein among mitochondrial translation products labeled in isolated mitochondria. The var1Tg gene is even more A + T-rich (93%) than var1Sc (89.6%) and has conserved the strong codon bias of var1Sc. Major differences between the two sequences were found. Significant among these are that no GC clusters are found in var1Tg and the sequences surrounding each of the sites where known polymorphisms exist in var1Sc have deletions at the corresponding sites in var1Tg. These data are discussed with respect to possible origins of these var1 genes and translocation of GC clusters in S. cerevisiae mitochondrial DNA.  相似文献   
82.
The small nuclear RNAs U4 and U6 display extensive sequence complementarity and co-exist in a single ribonucleoprotein particle. We have investigated intermolecular base-pairing between both RNAs by psoralen cross-linking, with emphasis on the native U4/U6 ribonucleoprotein complex. A mixture of small nuclear ribonucleoproteins U1 to U6 from HeLa cells, purified under non-denaturing conditions by immune affinity chromatography with antibodies specific for the trimethylguanosine cap of the small nuclear RNAs was treated with aminomethyltrioxsalen. A psoralen cross-linked U4/U6 RNA complex could be detected in denaturing polyacrylamide gels. Following digestion of the cross-linked U4/U6 RNA complex with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate cross-linked fragments. These fragments were analysed by chemical sequencing methods and their positions identified within RNAs U4 and U6. Two overlapping fragments of U4 RNA, spanning positions 52 to 65, were cross-linked to one fragment of U6 RNA (positions 51 to 59). These fragments show complementarity over a contiguous stretch of eight nucleotides. From these results, we conclude that in the native U4/U6 ribonucleoprotein particle, both RNAs are base-paired via these complementary regions. The small nuclear RNAs U4 and U6 became cross-linked in the deproteinized U4/U6 RNA complex also, provided that small nuclear ribonucleoproteins were phenolized at 0 degree C. When the phenolization was performed at 65 degrees C, no cross-linking could be detected upon reincubation of the dissociated RNAs at lower temperature. These results indicate that proteins are not required to stabilize the mutual interactions between both RNAs, once they exist. They further suggest, however, that proteins may well be needed for exposing the complementary RNA regions for proper intermolecular base-pairing in the course of the assembly of the U4/U6 RNP complex from isolated RNAs. Our results are discussed also in terms of the different secondary structures that the small nuclear RNAs U4 and U6 may adopt in the U4/U6 ribonucleoprotein particle as opposed to the isolated RNAs.  相似文献   
83.
Summary The nucleotide sequences of the 5S and 5.8S rRNAs of eight strains of tetrahymenine ciliates have been determined. The sequences indicate a clear distinction betweenTetrahymena paravorax and its suggested conspecificT. vorax, but leave the taxonomic distinction betweenT. vorax andT. leucophrys in doubt. The rRNA sequences of sixTetrahymena species and of three other species of the suborder Tetrahymenina have been used to deduce evolutionary schemes in which ancestral rRNA sequences and changes are proposed. These schemes suggest the predominant acceptance of GA and CT transitions in the 5S rDNA during the evolution of the suborder.  相似文献   
84.
Summary The complete nucleotide sequence of the 5S ribosomal RNA from the cyanobacteriumSynechococcus lividus II has been determined. The sequence is 5-UGCCUAGUGUUUAUGGCGCG-GUGGAACCACGCUGAUCCAUCCCGAACUC-AGAGGUGAAACAUCGCAGCGGUGAAGAU-AGUUGGAGGGUAGCCUCCUGCAAAAAUA-GCUCAAUGCUAGGCAOH-3. This 5S RNA has the cyanobacterial- and chloroplast-specific nucleotide insertion between positions 30 and 31 (using the numbering system of the generalized eubacterial 5S RNA) and the chloroplast-specific nucleotide-deletion signature between positions 34 and 39. The 5S RNA ofS. lividus II has 27 base differences compared with the 5S RNA of the related strainS. lividus III. This large difference may reflect an ancient divergence between these two organisms. The electrophoretic mobilities on nondenaturing polyacrylamide gels of renatured 5S RNAs fromS. lividus II,S. lividus III, and spinach chloroplasts are identical, but differ considerably from that ofEscherichia coli 5S RNA. This most likely reflects differences in higher-order structure between the 5S RNA ofE. coli and these cyanobacterial and chloroplast 5S RNAs.  相似文献   
85.
Summary Differences in fertility restoration and mitochondrial nucleic acids permitted division of 25 accessions of S-type male sterile cytoplasm (cms-S) of maize into five subgroups: B/D, CA, LBN, ME, and S(USDA). S cytoplasm itself (USDA cytoplasm) was surprisingly not representative of cms-S, since only two other accessions, TC and I, matched its mitochondrial DNA pattern. CA was the predominant subgroup, containing 18 of the 25 accessions. The B/D and ME subgroups were the most fertile and LBN the most sterile. The exceptional sterility of LBN cytoplasm makes it the most promising of the 25 cms-S accessions for the production of hybrid seed. The most efficient means of quantifying the fertility of the subgroups was analysis of pollen morphology in plants having cms-S cytoplasm and simultaneously being heterozygous for nuclear restorer-of-fertility (Rf) genes. This method took advantage of the gametophytic nature of cms-S restoration. The inbred NY821LERf was found to contain at least two restorer genes for cms-S. Fertility differences were correlated with mitochondrial nucleic acid variation in the LBN, ME, and S (USDA) subgroups.Paper No. 9498 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   
86.
87.
mRNAs extracted from human pheochromocytoma were translated in vitro in a lysate of a rabbit reticulocytes. Two enzymes of the biosynthetic pathway of the catecholamines, tyrosine-hydroxylase (TH) and dopamine-beta-hydroxylase (DBH), were characterized as translation products after immunoprecipitation by specific antisera and electrophoretic analysis. The precursor of TH is a polypeptide having a molecular mass of 62,000 identical to that found for the mature protein. The molecular mass of the precursor of DBH 73,000 while that of the mature form is 79,000. TH and DBH have been translated from mRNAs having sedimentation coefficients of 22S and 25S, respectively.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号