首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   15篇
  2023年   1篇
  2020年   1篇
  2019年   7篇
  2018年   10篇
  2017年   2篇
  2016年   3篇
  2014年   26篇
  2013年   20篇
  2012年   19篇
  2011年   14篇
  2010年   23篇
  2009年   20篇
  2008年   21篇
  2007年   51篇
  2006年   30篇
  2005年   7篇
  2004年   1篇
  2003年   12篇
  2002年   1篇
  2001年   1篇
  1982年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
61.

Background

Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations.

Methods

Five different simulations have been conducted by varying starting structures and temperatures.

Results

The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300?K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400?K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing.

Conclusions

Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism.

General significance

The present study provides deeper understanding of the structural basis of the structural versatility of aptamers.  相似文献   
62.
Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus spp. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. AFLR-Protein three-dimensional model was generated using Robetta server. The modeled AFLR-Protein was further optimization and validation using Rampage. In the simulations, we monitored the backbone atoms and the C-α-helix of the modeled protein. The low RMSD and the simulation time indicate that, as expected, the 3D structural model of AFLR-protein represents a stable folding conformation. This study paves the way for generating computer molecular models for proteins whose crystal structures are not available and which would aid in detailed molecular mechanism of inhibition of aflatoxin.  相似文献   
63.
Prosser DE  Guo Y  Jia Z  Jones G 《Biophysical journal》2006,90(10):3389-3409
Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D(3) and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D(3) structures into the active site of this model identified potential substrate contact residues in the F-helix, the beta-3 sheet, and the beta-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1alpha-hydroxyvitamin D(3) to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the beta-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the beta-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.  相似文献   
64.
The plasmepsin proteases from the malaria parasite Plasmodium falciparum are attracting attention as putative drug targets. A recently published crystal structure of Plasmodium malariae plasmepsin IV bound to an allophenylnorstatine inhibitor [Clemente, J.C. et al. (2006) Acta Crystallogr. D 62, 246-252] provides the first structural insights regarding interactions of this family of inhibitors with plasmepsins. The compounds in this class are potent inhibitors of HIV-1 protease, but also show nM binding affinities towards plasmepsin IV. Here, we utilize automated docking, molecular dynamics and binding free energy calculations with the linear interaction energy LIE method to investigate the binding of allophenylnorstatine inhibitors to plasmepsin IV from two different species. The calculations yield excellent agreement with experimental binding data and provide new information regarding protonation states of active site residues as well as conformational properties of the inhibitor complexes.  相似文献   
65.
Acyl CoA diacylglycerol acyltransferase (DGAT, EC 2.3.120) is recognized as a key player of cellular diacylglycerol metabolism. It catalyzes the terminal, yet the committed step in triacylglycerol synthesis using diacylglycerol and fatty acyl CoA as substrates. The protein sequence of diacylglycerol acyltransferse (DGAT) Type 2B in Moretierella ramanniana var. angulispora (Protein_ID = AAK84180.1) was retrieved from GenBank. However, a structure is not yet available for this sequence. The 3D structure of DGAT Type 2B was modeled using a template structure (PDB ID: 1K30) obtained from Protein databank (PDB) identified by searching with position specific iterative BLAST (PSI-BLAST). The template (PDB ID: 1K30) describes the structure of DGAT from Cucurbita moschata. Modeling was performed using Modeller 9v2 and protein model is hence generated. The DGAT type 2B protein model was subsequently docked with six inhibitors (sphingosine; trifluoroperazine; phosphatidic acid; lysophospatidylserine; KCl; 1, 2-diolein) using AutoDock (a molecular docking program). The binding of inhibitors to the protein model of DGAT type 2B is discussed.  相似文献   
66.
Conformational changes of the Na+/K+-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg2+ and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations. Our data revealed that this model system consisting of only two domains retained the ability to adopt open or closed conformation, i.e. behavior, which is expected from the crystal structures of relative Ca2+-ATPase from sarco(endo)plasmic reticulum for the corresponding part of the entire enzyme. Our data revealed that the C45 is found in the closed conformation in the absence of any ligand, in the presence of Mg2+ only, or in the simultaneous presence of Mg2+ and ATP. Binding of the ATP alone (i.e. in the absence of Mg2+) induced open conformation of the C45. The fact that the transmembrane part of the enzyme was absent in our experiments suggested that the observed conformational changes are consequences only of the interaction with ATP or Mg2+ and may not be related to the transported cations binding/release, as generally believed. Our data are consistent with the model, where ATP binding to the low-affinity site induces conformational change of the cytoplasmic part of the enzyme, traditionally attributed to E2 → E1 transition, and subsequent Mg2+ binding to the enzyme-ATP complex induces in turn conformational change traditionally attributed to E1 → E2 transition.  相似文献   
67.
Although proteins are a fundamental unit in biology, the mechanism by which proteins fold into their native state is not well understood. In this work, we explore the assembly of secondary structure units via geometric constraint-based simulations and the effect of refinement of assembled structures using reservoir replica exchange molecular dynamics. Our approach uses two crucial features of these methods: i), geometric simulations speed up the search for nativelike topologies as there are no energy barriers to overcome; and ii), molecular dynamics identifies the low free energy structures and further refines these structures toward the actual native conformation. We use eight α-, β-, and α/β-proteins to test our method. The geometric simulations of our test set result in an average RMSD from native of 3.7 Å and this further reduces to 2.7 Å after refinement. We also explore the question of robustness of assembly for inaccurate (shifted and shortened) secondary structure. We find that the RMSD from native is highly dependent on the accuracy of secondary structure input, and even slightly shifting the location of secondary structure along the amino acid sequence can lead to a rapid decrease in RMSD to native due to incorrect packing.  相似文献   
68.
Lu Lu  Jie Nan  Lan-Fen Li  Xiao-Dong Su  Yi Li 《FEBS letters》2010,584(16):3533-3539
Microtubules are composed of polymerized α/β-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures β-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with β-tubulin in plant. Furthermore, mutagenesis studies indicated that the α-helical regions of KIS participate in β-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to β-tubulin in plants.

Structured summary

MINT-7968902, MINT-7968915, MINT-7968951, MINT-7968966: KIS (uniprotkb:O04350) physically interacts (MI:0915) with Tub9 (uniprotkb:P29517) by anti tag coimmunoprecipitation (MI:0007)MINT-7968928: KIS (uniprotkb:O04350) and Tub9 (uniprotkb:P29517) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)  相似文献   
69.
Peptide XT-7 (GLLGP5LLKIA10AKVGS15NLL.NH2) is a cationic, leucine-rich peptide, first isolated from skin secretions of the frog, Silurana tropicalis (Pipidae). The peptide shows potent, broad-spectrum antimicrobial activity but its therapeutic potential is limited by haemolytic activity (LC50 = 140 µM). The analogue [G4K]XT-7, however, retains potent antimicrobial activity but is non-haemolytic (LC50 > 500 µM). In order to elucidate the molecular basis for this difference in properties, the three dimensional structures of XT-7 and the analogue have been investigated by proton NMR spectroscopy and molecular modelling. In aqueous solution, both peptides lack secondary structure. In a 2,2,2-trifluoroethanol (TFE-d3)-H2O mixed solvent system, XT-7 is characterised by a right handed α-helical conformation between residues Leu3 and Leu17 whereas [G4K]XT-7 adopts a more restricted α-helical conformation between residues Leu6 and Leu17. A similar conformation for XT-7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellular media was observed with a helical segment between Leu3 and Leu17. However, differences in side chain orientations restricting the hydrophilic residues to a smaller patch resulted in an increased hydrophobic surface relative to the conformation in TFE-H2O. Molecular modelling of the structures obtained in our study demonstrates the amphipathic character of the helical segments. It is proposed that the marked decrease in haemolytic activity produced by the substitution Gly4 → Lys in XT-7 arises from a decrease in both helicity and hydrophobicity. These studies may facilitate the development of potent but non-toxic anti-infective agents based upon the structure of XT-7.  相似文献   
70.
The properties of three discrete premicellar complexes (E1#, E2#, E3#) of pig pancreatic group-IB secreted phospholipase A2 (sPLA2) with monodisperse alkyl sulfates have been characterized [Berg, O. G. et al., Biochemistry 43, 7999–8013, 2004]. Here we have solved the 2.7 Å crystal structure of group-IB sPLA2 complexed with 12 molecules of octyl sulfate (C8S) in a form consistent with a tetrameric oligomeric that exists during the E1# phase of premicellar complexes. The alkyl tails of the C8S molecules are centered in the middle of the tetrameric cluster of sPLA2 subunits. Three of the four sPLA2 subunits also contain a C8S molecule in the active site pocket. The sulfate oxygen of a C8S ligand is complexed to the active site calcium in three of the four protein active sites. The interactions of the alkyl sulfate head group with Arg-6 and Lys-10, as well as the backbone amide of Met-20, are analogous to those observed in the previously solved sPLA2 crystal structures with bound phosphate and sulfate anions. The cluster of three anions found in the present structure is postulated to be the site for nucleating the binding of anionic amphiphiles to the interfacial surface of the protein, and therefore this binding interaction has implications for interfacial activation of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号