首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   1篇
  国内免费   8篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2016年   1篇
  2015年   2篇
  2014年   10篇
  2013年   10篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
21.
维甲酸诱导基因I样受体家族(retinoid acid-inducible gene-I-like receptors, RLRs)信号通路作为众多抗感染免疫信号通路之一,在诱导促炎细胞因子、趋化因子和I型干扰素产生等方面发挥重要的调控作用。作为蛋白质翻译后修饰之一的泛素化(ubiquitination),是由泛素蛋白(ubiquitin)与目标蛋白上不同的氨基酸位点产生结合来调控蛋白的命运,如启动蛋白酶体途径降解蛋白或激活转运等功能。而RLRs信号通路分子的泛素化修饰既是调控多种效应因子的方式之一,也是病毒经此诱发动物重要疾病以及自身免疫病、慢性炎症的经典路径之一。本文主要综述RLRs信号通路中重要的效应器分子的典型结构特征、泛素化修饰类型和功能,探讨泛素化修饰调控RLRs信号通路关键分子的作用,为相关疾病的干预或治疗提供参考。  相似文献   
22.
Post-translational protein modification is an important strategy for the regulation of the cell proteome independent of the need for new gene expression. Ubiquitin and ubiquitin-like modifiers mediate the regulation of protein levels, signaling pathways, vesicular trafficking, and many other cellular processes through their covalent conjugation to proteins. Interferon stimulated gene 15 (ISG15) is a ubiquitin-like modifier induced by type I interferon. In addition to conjugating to potentially hundreds of target proteins, ISG15 can be found in an unconjugated form both inside of the cell and released from interferon stimulated cells into the extracellular environment. Due to its robust expression after type I interferon stimulation and the broad panel of proteins that it targets, ISG15 has drawn much attention as a potential regulator of the immune response and has been shown to mediate protection in a number of different viral infection models. Here we will review the current state of the field of ISG15, the viruses against which ISG15 mediates protection, and the mechanisms by which ISG15 exerts antiviral activity.  相似文献   
23.
24.
Hepatitis C virus (HCV) is a positive-strand RNA virus responsible for chronic liver disease and hepatocellular carcinoma (HCC). RacGTPase-activating protein 1 (RacGAP1) plays an important role during GTP hydrolysis to GDP in Rac1 and CDC42 protein and has been demonstrated to be upregulated in several cancers, including HCC. However, the molecular mechanism leading to the upregulation of RacGAP1 remains poorly understood. Here, we showed that RacGAP1 levels were enhanced in HCV cell-culture-derived (HCVcc) infection. More importantly, we illustrated that RacGAP1 interacts with the viral protein NS5B in mammalian cells. The small interfering RNA (siRNA)-mediated knockdown of RacGAP1 in human hepatoma cell lines inhibited replication of HCV RNA, protein, and production of infectious particles of HCV genotype 2a strain JFH1. Conversely, these were reversed by the expression of a siRNA-resistant RacGAP1 recombinant protein. In addition, viral protein NS5B polymerase activity was significantly reduced by silencing RacGAP1 and, vice versa, was increased by overexpression of RacGAP1 in a cell-based reporter assay. Our results suggest that RacGAP1 plays a crucial role in HCV replication by affecting viral protein NS5B polymerase activity and holds importance for antiviral drug development.  相似文献   
25.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   
26.
Host defenses to virus infection are dependent on a rapid detection by pattern recognition receptors (PRRs) of the innate immune system. In the cytoplasm, the PRRs RIG-I and PKR bind to specific viral RNA ligands. This first mediates conformational switching and oligomerization, and then enables activation of an antiviral interferon response. While methods to measure antiviral host gene expression are well established, methods to directly monitor the activation states of RIG-I and PKR are only partially and less well established.Here, we describe two methods to monitor RIG-I and PKR stimulation upon infection with an established interferon inducer, the Rift Valley fever virus mutant clone 13 (Cl 13). Limited trypsin digestion allows to analyze alterations in protease sensitivity, indicating conformational changes of the PRRs. Trypsin digestion of lysates from mock infected cells results in a rapid degradation of RIG-I and PKR, whereas Cl 13 infection leads to the emergence of a protease-resistant RIG-I fragment. Also PKR shows a virus-induced partial resistance to trypsin digestion, which coincides with its hallmark phosphorylation at Thr 446. The formation of RIG-I and PKR oligomers was validated by native polyacrylamide gel electrophoresis (PAGE). Upon infection, there is a strong accumulation of RIG-I and PKR oligomeric complexes, whereas these proteins remained as monomers in mock infected samples.Limited protease digestion and native PAGE, both coupled to western blot analysis, allow a sensitive and direct measurement of two diverse steps of RIG-I and PKR activation. These techniques are relatively easy and quick to perform and do not require expensive equipment.  相似文献   
27.
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.  相似文献   
28.
It was widely known that retinoic acid inducible gene I (RIG-I) functions as a cytosolic pattern recognition receptor that initiates innate antiviral immunity by detecting exogenous viral RNAs. However, recent studies showed that RIG-I participates in other various cellular activities by sensing endogenous RNAs under different circumstances. For example, RIG-I facilitates the therapy resistance and expansion of breast cancer cells and promotes T cell-independent B cell activation through interferon signaling activation by recognizing non-coding RNAs and endogenous retroviruses in certain situations. While in hepatocellular carcinoma and acute myeloid leukemia, RIG-I acts as a tumor suppressor through either augmenting STAT1 activation by competitively binding STAT1 against its negative regulator SHP1 or inhibiting AKT-mTOR signaling pathway by directly interacting with Src respectively. These new findings suggest that RIG-I plays more diverse roles in various cellular life activities, such as cell proliferation and differentiation, than previously known. Taken together, the function of RIG-I exceeds far beyond that of a pattern recognition receptor.  相似文献   
29.
在真核生物体内,除了能够识别入侵机体的病毒RNA的TOLL样受体外,近年来发现了另一种能够识别病毒RNA的细胞质内受体--RIG-I.RIG-I能够识别病毒的RNA组分,并通过自身的CARD与下游信号分子MAVS的CARD相互作用来传递信号,激活细胞转录因子IRF-3和NF-κB,使其进入细胞核内,诱导β干扰素的表达,从而启动固有免疫应答和调节随后的获得性免疫应答,增强机体抵抗病毒的能力.另外,近年来的研究还发现了两个与RIG-I任序列、功能上都有很大相似性的病毒RNA识别蛋白质:MDA5和LGP2.  相似文献   
30.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号