首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7060篇
  免费   81篇
  国内免费   131篇
  7272篇
  2024年   9篇
  2023年   103篇
  2022年   109篇
  2021年   169篇
  2020年   208篇
  2019年   327篇
  2018年   279篇
  2017年   168篇
  2016年   134篇
  2015年   79篇
  2014年   498篇
  2013年   933篇
  2012年   269篇
  2011年   485篇
  2010年   307篇
  2009年   317篇
  2008年   268篇
  2007年   295篇
  2006年   314篇
  2005年   274篇
  2004年   223篇
  2003年   163篇
  2002年   156篇
  2001年   11篇
  2000年   20篇
  1999年   13篇
  1998年   18篇
  1997年   15篇
  1996年   16篇
  1994年   8篇
  1993年   11篇
  1992年   4篇
  1991年   12篇
  1989年   6篇
  1986年   4篇
  1985年   78篇
  1984年   137篇
  1983年   90篇
  1982年   104篇
  1981年   102篇
  1980年   89篇
  1979年   64篇
  1978年   61篇
  1977年   69篇
  1976年   61篇
  1975年   59篇
  1974年   51篇
  1973年   55篇
  1972年   12篇
  1971年   3篇
排序方式: 共有7272条查询结果,搜索用时 0 毫秒
51.
A new α-amylase from Anoxybacillus flavothermus (AFA) was found to be effective in hydrolyzing raw starch in production of glucose syrup at temperatures below the starch gelatinization temperature. AFA is very efficient, leading to 77% hydrolysis of a 31% raw starch suspension. The final hydrolysis degree is reached in 2-3 h at starch concentrations lower than 15% and 8-24 h at higher concentrations. AFA is also very efficient in hydrolyzing the crystalline domains in the starch granule. The major A-type crystalline structure is more rapidly degraded than amorphous domains in agreement with the observed preferential hydrolysis of amylopectin. Amylose-lipid complexes are degraded in a second step, yielding amylose fragments which then re-associate into B-type crystalline structures forming the final α-amylase resistant fraction. The mode of action of AFA and the factors limiting complete hydrolysis are discussed in details.  相似文献   
52.
Human wild type (WT) and mutant alpha-synuclein (alpha-syn) genes were overexpressed using a Tet-on expression system in stably transfected dopaminergic MN9D cells. Their overexpression induced caspase-independent and dopamine-related apoptosis not rescued by general caspase inhibitor Z-VAD-FMK. While apoptosis due to overexpression of WT alpha-syn was completely abrogated by a specific tyrosine hydroxylase (TH) inhibitor, alpha-methyl-p-tyrosine (alpha-MT), the inhibitor only partially rescued apoptosis caused by overexpression of alpha-syn mutants. In addition, overexpression of mutants enhanced the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxyldopamine (6-OHDA) to MN9D cells, whereas overexpression of WT protected MN9D cells against MPP+ toxicity, but not against 6-OHDA. We conclude that WT alpha-syn is beneficial to dopaminergic neurons but its overexpression in the presence of endogenous dopamine makes it a potential threat to the cells. In contrast, mutant alpha-syn not only caused the loss of WT protective function but also the gain-of-toxicity which becomes more serious in the presence of dopamine and neurotoxins.  相似文献   
53.
54.
Lathyrus sativus seeds were treated with 60Coγ-ray and EMS(ethyl methane sulfonate), and their emergence rate and SOD,POD and CAT activities were determined. The result indicated that the treatment decreased the emergence rate. The activities of SOD and POD were changed in accordance with the increase of irradiation dose and EMS concentration, while that of CAT had no obvious change. After treatment, the ODAP content in Lathyrus sativus decreased. Amutant was developed, with toxin content of 0.1%, compared to 0.2% in control.  相似文献   
55.
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.  相似文献   
56.
57.
58.
Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-α release and increased IL-10 release. The inhibitory effect of ATP on TNF- α release was completely reversed by adenosine 5′-O-thiomonophosphate, indicating a P2Y11 mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6 h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.  相似文献   
59.
Dilated cardiomyopathy often results from autoimmunity triggered by microbial infections during myocarditis. However, it remains unclear how immunological disorders are implicated in pathogenesis of autoimmune myocarditis. Here, we demonstrated that Sema4A, a class IV semaphorin, plays key roles in experimental autoimmune myocarditis (EAM). Dendritic cells pulsed with myosin heavy chain-α peptides induced severe myocarditis in wild-type mice, but not in Sema4A-deficient mice. In adoptive transfer experiments, CD4+ T-cells from wild-type mice induced severe myocarditis, while CD4+ T-cells from Sema4A-deficient mice exhibited considerably attenuated myocarditis. Our results indicated that Sema4A is critically involved in EAM by regulating differentiation of T-cells.  相似文献   
60.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号