首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2158篇
  免费   22篇
  国内免费   323篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   34篇
  2013年   67篇
  2012年   27篇
  2011年   52篇
  2010年   62篇
  2009年   92篇
  2008年   136篇
  2007年   147篇
  2006年   154篇
  2005年   158篇
  2004年   137篇
  2003年   166篇
  2002年   175篇
  2001年   158篇
  2000年   171篇
  1999年   177篇
  1998年   149篇
  1997年   113篇
  1996年   95篇
  1995年   77篇
  1994年   66篇
  1993年   30篇
  1992年   13篇
  1991年   1篇
排序方式: 共有2503条查询结果,搜索用时 593 毫秒
91.
Genetic diversity among 13 different cultivars of date palm (Phoenix dactylifera L.) of Saudi Arabia was studied using random amplified polymorphic DNA (RAPD) markers. The screening of 140 RAPD primers allowed selection of 37 primers which revealed polymorphism, and the results were reproducible. All 13 genotypes were distinguishable by their unique banding patterns produced by 37 selected primers. Cluster analysis by the unweighted paired group method of arithmetic mean (UPGMA) showed two main clusters. Cluster A consisted of five cultivars (Shehel, Om-Kobar, Ajwa, Om-Hammam and Bareem) with 0.59–0.89 Nei and Li's coefficient in the similarity matrix. Cluster B consisted of seven cultivars (Rabeeha, Shishi, Nabtet Saif, Sugai, Sukkary Asfar, Sukkary Hamra and Nabtet Sultan) with a 0.66–0.85 Nei and Li's similarity range. Om-Hammam and Bareem were the two most closely related cultivars among the 13 cultivars with the highest value in the similarity matrix for Nei and Li's coefficient (0.89). Ajwa was closely related with Om-Hammam and Bareem with the second highest value in the similarity matrix (0.86). Sukkary Hamra and Nabtet Sultan were also closely related, with the third highest value in the similarity matrix (0.85). The cultivar Barny did not belong to any of the cluster groups. It was 34% genetically similar to the rest of the 12 cultivars. The average similarity among the 13 cultivars was more than 50%. As expected, most of the cultivars have a narrow genetic base. The results of the analysis can be used for the selection of possible parents to generate a mapping population. The variation detected among the closely related genotypes indicates the efficiency of RAPD markers over the morphological and isozyme markers for the identification and construction of genetic linkage maps.Communicated by H.F. Linskens  相似文献   
92.
Intrafamilial spread of Helicobacter pylori: a genetic analysis   总被引:4,自引:0,他引:4  
Background. A high incidence of Helicobacter pylori among family members of children with H. pylori gastritis has previously been documented on biopsy material. The main objective of this study was the genetic clarification of H. pylori strains involved in intrafamilial dispersion. Materials and Methods. Formalin‐fixed, paraffin‐embedded material of antral mucosa from 32 members of 11 families was studied for the presence of genetic homogeneity. To achieve this goal, the entire genome of H. pylori was studied by the polymerase chain reaction (PCR)‐based random amplified polymorphic DNA (RAPD) fingerprinting method. Furthermore, the Urease A gene was analyzed using a multiplex PCR‐assay and an alternative mutation detection method based on the Hydrolink? analysis. Results. RAPD fingerprinting confirmed that closely related H. pylori strains were involved in the intrafamilial dispersion. Mutations and small deletions in Urease A gene were found in 22 out of 32 individuals. Conclusions. The homology of the H. pylori genome in members of the same family strongly supports the hypothesis of transmission of H. pylori from person‐to‐person or from a common source.  相似文献   
93.
极度濒危植物五针白皮松的保护遗传学研究   总被引:10,自引:0,他引:10  
用随机扩增多态(RAPD)方法对极度濒危植物五针白皮松(Pinus squamata X.W.Li)的遗传多样性和居群遗传结构进行了研究。14个随机引物共获得93条RAPD谱带,其中6条为多态带,多态位点百分率仅为6.45%,遗传多样性极低。Shannon指数I和Nei指数h在种内也只有0.020和0.030,两个亚居群间(半阴坡亚居群与半阳坡亚居群)遗传分化程度不高,遗传分化系数Gst只有0.110,与大多数松科植物近似,居群每代迁移数为4.032。五针白皮松极低的遗传多样性可能是由于它在演化过程中遭受过严重的灾害,造成严重的瓶颈效应,丧失其大部分遗传变异。在随后的演化过程中由于遗传漂变、自交衰退等小种群现象,导致遗传多样性的进一步丧失。另外,阔叶树种对其生存的挤压和人类的干扰也是导致五针白皮松遗传多样性降低的因素之一。本文最后对该结果的保护生物学意义进行了评价。  相似文献   
94.
Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA ofChlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains ofChlamydomonas (C. reinhardtii andC. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, “P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, “P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely “sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a "unique" new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a “complex path” of copy-choice replication.  相似文献   
95.
Sub-alpine Abies veitchii and A. homolepis are distributed in the central part of Honshu Island, Japan, and their habitats are segregated vertically. These species sometimes form a mixed forest in the overlapping area of the two species, that is, in the upper limit of the A. homolepis habitat and the lower limit of A. veitchii. These species have been considered to be distantly related because they were classified into different sections by most conventional classifications. No natural hybridization has been reported between the two species. The aim of this study was to demonstrate, through the use of molecular markers, whether natural hybridization takes place between these two species at two experimental sites on Mt. Fuji, where the species occur naturally. DNA markers from paternally inherited chloroplast DNA (cpDNA), maternally inherited mitochondrial DNA (mtDNA) and biparentally inherited nuclear DNA (nDNA), were used for this study. As organelle DNA markers, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) markers were developed to determine the maternal and paternal species for each individual. Two of 334 individuals possessed a cpDNA haplotype derived from A. homolepis and a mtDNA haplotype from A. veitchii. Furthermore, the nDNA of these two individuals was analysed using the random amplified polymorphic DNA (RAPD) assay to investigate their genomic composition. RAPD analysis indicated that the nuclear genomes of the two individuals were derived from both species. We conclude that A. veitchii and A. homolepis produce natural hybrids, and that their systematic relationship should be re-evaluated.  相似文献   
96.
Random amplified polymorphic DNA (RAPD) markers were used to analyse genetic variation within and between populations of Isoodon obesulus in Western Australia. Genetically controlled geographical variation in body size associated with habitat type and rainfall exists in this species, raising the question of whether local conditions may influence gene flow in I. obesulus. The RAPD markers displayed substantial genetic variation, with all animals possessing unique RAPD phenotypes over 39 polymorphic bands produced by three primers. Significant geographical subdivision was apparent (PhiST = 0.208) with southwest locations being divergent from all others, despite there being no physical barriers to gene flow. The pattern of subdivision was unrelated to physical distance between the locations, but was related to both annual rainfall and habitat type. Therefore, the most reasonable explanation for this pattern of subdivision appears to be that gene flow is restricted by selection against migrants between local populations with substantially different habitat type or rainfall. Restriction of gene flow through selection against migrants is rarely investigated, and the results of this study suggest that the importance of this process in the formation of population structure may be underestimated.  相似文献   
97.
Genetic variation among 12 populations of the American chestnut (Castanea dentata) was investigated. Population genetic parameters estimated from allozyme variation suggest that C. dentata at both the population and species level has narrow genetic diversity as compared to other species in the genus. Average expected heterozygosity was relatively low for the population collected in the Black Rock Mountain State Park, Georgia (He = 0.096 +/- 0.035), and high for the population in east central Alabama (He = 0.196 +/- 0.048). Partitioning of the genetic diversity based on 18 isozyme loci showed that ~10% of the allozyme diversity resided among populations. Cluster analysis using unweighted pair-group method using arithmetric averages of Rogers' genetic distance and principal components analysis based on allele frequencies of both isozyme and RAPD loci revealed four groups: the southernmost population, south-central Appalachian populations, north-central Appalachian populations, and northern Appalachian populations. Based on results presented in this study, a conservation strategy and several recommendations related to the backcross breeding aimed at restoring C. dentata are discussed.  相似文献   
98.
Debates on speciation processes in pteridophytes have revived. In order to study the evolutionary origin of an apomictic fern species, we investigated the genetic variation in the strictly agamosporous Dryopteris remota. We determined the genotypes of 22 individuals from many different locations within the species' European distribution and of 20 individuals from a Swiss population. A previous study on isozyme variation showed no intraspecific genetic variation in a similar sample set (Schneller and Holderegger, 1994, American Fern Journal 84: 94-98). In contrast to this, four out of 12 random amplified polymorphic DNA (RAPD) primers tested revealed low genetic diversity among individuals of D. remota from different locations. Intrapopulational genetic variation was also very low, but in the single population studied, a unique multiband genotype could be detected. The geographic distribution of genetic variation found in D. remota was best explained by the assumption of a single origin, the accumulation of somatic mutations during spread, and occasional, but effective, events of dispersal over large distances. The present study thus stresses the importance of long-distance dispersal in evolutionary processes and biogeography of ferns.  相似文献   
99.
We investigated the distribution of genetic variation and the relationship between population size and genetic variation in the rare plant Gentianella germanica using RAPD (random amplified polymorphic DNA) profiles. Plants for the analysis were grown from seeds sampled from 72 parent plants in 11 G. germanica populations of different size (40-5000 fruiting individuals). In large populations, seeds were sampled from parents in two spatially distinct subpopulations comparable in area to the total area covered by small populations. Analysis of molecular variance revealed significant genetic variation among populations (P <0.001), while genetic variation among subpopulations was marginally significant (P <0.06). Average molecular variance within subpopulations in large populations did not differ significantly from whole-population values. There was a positive correlation between genetic variation and population size (P <0.01). Genetic variation was also positively correlated with the number of seeds per plant in the field (P <0.02) and the number of flowers per planted seed in a common garden experiment (P <0.051). We conclude that gene flow among natural populations is very limited and that reduced plant fitness in small populations of G. germanica most likely has genetic causes. Management should aim to increase the size of small populations to minimize further loss of genetic variation. Because a large proportion of genetic variation is among populations, even small populations are worth preserving.  相似文献   
100.
 The variety Vitis vinifera cv Sultanine presents a type of seedlessness in which fertilization occurs but seeds subsequently fail to develop. It has been suggested that this trait might be controlled by three complementary recessive genes regulated by a dominant gene named I. Bulk segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to the I gene in progeny obtained by crossing two partially seedless genotypes. One hundred and forty decamer primers were screened using bulks obtained by pooling the DNA of extreme individuals from the phenotypic distribution. We identified two RAPD markers which appeared tightly linked to I (at 0.7 and 3.5 cM respectively). The closest marker was used to develop a codominant SCAR (sequence characterized amplified region), named SCC8. This latter marker appeared of great value either to exclude from the progeny potentially seeded individuals or to select for seedless individuals. Indeed, all the seeded individuals of the progeny were found to be homozygous scc8 -/scc8 -, and all the individuals homozygous SCC8 +/SCC8 + were seedless. Moreover, this marker was successfully applied to other natural seedless varieties where codominance persisted. SCC8 was also used to dissect more precisely the genetics of seedlessness. ANOVA analysis indicated that this SCAR marker accounted for at least 64.9% of the phenotypic variation of the seed’s fresh weight and for at least 78.7% of the phenotypic variation of the seed’s dry matter. These results confirmed the presence of a major gene, and also the existence of other complementary recessive genes, controlling the expression of seedlessness. Received: 29 July 1997 / Accepted: 16 March 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号