首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21705篇
  免费   1094篇
  国内免费   750篇
  2023年   348篇
  2022年   505篇
  2021年   624篇
  2020年   654篇
  2019年   864篇
  2018年   733篇
  2017年   470篇
  2016年   454篇
  2015年   528篇
  2014年   1180篇
  2013年   1546篇
  2012年   888篇
  2011年   1237篇
  2010年   839篇
  2009年   961篇
  2008年   1007篇
  2007年   1065篇
  2006年   906篇
  2005年   778篇
  2004年   696篇
  2003年   594篇
  2002年   465篇
  2001年   344篇
  2000年   266篇
  1999年   281篇
  1998年   282篇
  1997年   250篇
  1996年   257篇
  1995年   199篇
  1994年   188篇
  1993年   170篇
  1992年   192篇
  1991年   168篇
  1990年   145篇
  1989年   130篇
  1988年   136篇
  1987年   138篇
  1986年   123篇
  1985年   239篇
  1984年   354篇
  1983年   277篇
  1982年   303篇
  1981年   246篇
  1980年   277篇
  1979年   256篇
  1978年   200篇
  1977年   163篇
  1976年   142篇
  1975年   131篇
  1974年   128篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
Accumulation of 5-aminolevulinic acid (ALA) is an event characteristic of porphyrias that may contribute to their pathological manifestations. To investigate effects of ALA independent of porphyrin accumulation we treated rats with the methyl ester of succinylacetone, an inhibitor of 5-aminolevulinic acid dehydratase that accumulates in the porphyric-like syndrome hereditary tyrosinemia. Acute 2-day treatment of fasted rats with succinylacetone methyl ester (SAME) promoted a 27% increase in plasma ALA. This increase in plasma ALA was accompanied by augmentation of the level of total nonheme iron in liver (37%) and brain (20%). Mobilization of iron was also indicated by 49% increase in plasma iron and a 77% increase in plasma transferrin saturation. Liver responded with a mild (12%) increase in ferritin. Under these acute conditions, some indications of oxidative stress were evident: a 15% increase in liver reactive protein carbonyls, and a 42% increase in brain subcellular membrane TBARS. Brain also showed a 44% increase in CuZnSOD activity, consistent with observations in treatment with ALA. Overall, the data indicate that SAME promotes ALA-driven changes in iron metabolism that could lead to increased production of free radicals. The findings support other evidence that accumulation of ALA in porphyrias and hereditary tyrosinemia may induce iron-dependent biological damage that contributes to neuropathy and hepatoma.  相似文献   
852.
《Free radical research》2013,47(2):194-203
Age-dependent declining level of melatonin induces free radical load and thereby deteriorates immune function. However, reports are lacking about age-dependent melatonin membrane receptor (MT1 & MT2) expression, their role in regulation of reactive nitrogen species (RNS) and eventually how they affect immunity of a tropical rodent F. pennanti. We checked MT1R, MT2R and iNOS expression in lymphoid organs of young middle and old aged squirrels. Nitrite and nitrate ion concentration (NOx) in lymphoid organs, testes and plasma, lymphocyte proliferation and IL-2 level was recorded. Age-dependent decrease in MT1 and MT2 receptor expression, lymphocyte proliferation, IL-2 level and increased RNS in lymphoid organs, testes and plasma was observed with decreased circulatory melatonin. Androgen and AR expression was increased in middle-aged while declined in old-aged squirrels. Present study suggests that age associated immunosenescence is consequence of increased RNS which might have important relationship with melatonin membrane receptors in F. pennanti.  相似文献   
853.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   
854.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   
855.
Abstract

Objective: To explore whether the functional chemokine receptor 5 delta32 (CCR5-Δ32) polymorphism is associated with susceptibility to cancer. Methods: A meta-analysis was conducted on the association between the CCR5-Δ32 polymorphism and cancer using (i) allele contrast and (ii) the dominant model. Results: Thirteen articles, including 16 comparative studies on a total of 3087 patients and 3735 controls, were included in the meta-analysis. These studies encompassed breast cancer (n?=?3), bladder cancer (n?=?3), cervical cancer (n?=?2), pancreatic cancer (n?=?2), prostate cancer (n?=?2), head and neck cancer (n?=?2), lymphoma (n?=?1), gallbladder cancer (n?=?1), skin cancer (n?=?1) and mixed cancer (n?=?1). The meta-analysis revealed an association between cancer and the CCR5-Δ32 allele (OR?=?1.368, 95% CI?=?1.064–1.758, p?=?0.014), and stratification by ethnicity showed an association between the CCR5-Δ32 allele and cancer in Indians (OR?=?2.480, 95% CI?=?1.247–4.932, p?=?0.010). The meta-analysis also revealed an association between breast cancer and the CCR5-Δ32 allele (OR?=?1.689, 95% CI?=?1.012–2.821, p?=?0.045). However, allele contrast and the dominant model failed to reveal an association between the CCR5-Δ32 polymorphism and bladder cancer, cervical cancer, pancreatic cancer, prostate cancer, and head and neck cancer. Conclusions: This meta-analysis demonstrates that the CCR5-Δ32 polymorphism is associated with susceptibility to cancer in Indians and is associated with breast cancer.  相似文献   
856.
Abstract

TGR5 is the G-protein–coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.  相似文献   
857.
ABSTRACT

A prominent iron-regulated periplasmic protein was purified from Pasteurella haemolytica grown in an iron-deficient chemically defined medium. The protein was purified by anion exchange chromatography and appeared as a single band by SDS-PAGE with a molecular weight of 32,000. A yield of five mg was obtained from 91 mg of protein extract. The iron-regulated protein existed as a monomer in the native state with an average molecular weight of 29,877 as determined by analytical ultracentrifugation. The protein had a molecular weight of 30,880 as determined by matrix-assisted laser desorption mass spectrometry, hence the protein is referred to as the 31 kDa protein. Isoelectric focusing showed four bands with pIs of 7.15, 6.8, 6.6, and 5.9, The secondary structure of the protein was determined by circular dichroism and contained 16% α-helical structure. The N-terminal sequence, EPFKVVTTFTVIQDIAQNVAGDKAT, showed a 95% identity with the 31 kDa iron-binding protein from Haemophilus influenzae. Isolation and characterization of iron-regulated proteins are of particular interest because of their potential roles in iron assimilation and microbial virulence.  相似文献   
858.
Methylene blue (MB) biosorption properties of Rhizopus arrhizus were investigated in the presence of surfactants. The effects of cationic and anionic surfactants on MB removal by dead biomass (1 g L?1) were determined. MB removal was tested as a function of initial pH (2–12), contact time (5–1440 min), and dye (37.4–944.7 mg L?1) and surfactant (0–10 mM) concentrations. The opposite charged anionic surfactant dodecylbenzenesulfonic acid sodium salt (DBS) enhanced sorption of cationic MB by biomass dramatically. Maximum biosorption capacity was 471.5 mg g?1 at pH 8 with 0.5 mM DBS at 944.7 mg L?1 MB concentration. The surfactant-stimulated fungal decolorization method may provide a highly efficient, inexpensive, and time-saving procedure in biological wastewater treatment technologies.  相似文献   
859.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   
860.
The vector of Chagas disease, Triatoma infestans, is largely controlled by the household application of pyrethroid insecticides. Because effective, large‐scale insecticide application is costly and necessitates numerous trained personnel, alternative control techniques are badly needed. We compared the residual effect of organophosphate‐based insecticidal paint (Inesfly 5A IGR? (I5A)) to standard deltamethrin, and a negative control, against T. infestans in a simulated natural environment. We evaluated mortality, knockdown, and ability to take a blood meal among 5th instar nymphs. I5A paint caused significantly greater mortality at time points up to nine months compared to deltamethrin (Fisher's Exact Test, p < 0.01 in all instances). A year following application, mortality among nymphs in the I5A was similar to those in the deltamethrin (χ2 = 0.76, df=1, p < 0.76). At months 0 and 1 after application, fewer nymphs exposed to deltamethrin took a blood meal compared to insects exposed to paint (Fisher's Exact Tests, p < 0.01 and p < 0.01, respectively). Insecticidal paint may provide an easily‐applied means of protection against vectors of Chagas disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号