首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5224篇
  免费   262篇
  国内免费   285篇
  5771篇
  2023年   74篇
  2022年   93篇
  2021年   132篇
  2020年   108篇
  2019年   172篇
  2018年   173篇
  2017年   124篇
  2016年   103篇
  2015年   109篇
  2014年   285篇
  2013年   360篇
  2012年   237篇
  2011年   268篇
  2010年   186篇
  2009年   213篇
  2008年   211篇
  2007年   248篇
  2006年   221篇
  2005年   196篇
  2004年   167篇
  2003年   175篇
  2002年   131篇
  2001年   106篇
  2000年   100篇
  1999年   98篇
  1998年   87篇
  1997年   95篇
  1996年   72篇
  1995年   82篇
  1994年   76篇
  1993年   70篇
  1992年   82篇
  1991年   76篇
  1990年   59篇
  1989年   44篇
  1988年   60篇
  1987年   45篇
  1986年   26篇
  1985年   75篇
  1984年   93篇
  1983年   64篇
  1982年   60篇
  1981年   53篇
  1980年   61篇
  1979年   48篇
  1978年   28篇
  1977年   31篇
  1976年   26篇
  1975年   25篇
  1973年   18篇
排序方式: 共有5771条查询结果,搜索用时 15 毫秒
71.
72.
Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower ( Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly ( P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly ( P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR.  相似文献   
73.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   
74.
Phytochrome control of short-day-induced bud set in black cottonwood   总被引:6,自引:0,他引:6  
In trees and other woody perennial plants, short days (SDs) typically induce growth cessation, the initiation of cold acclimation, the formation of a terminal bud and bud dormancy. Phytochrome control of SD-induced bud set was investigated in two northern clones of black cottonwood (Populus trichocarpa Torr. & Gray) by using night breaks with red light (R) and far-red light (FR). For both clones (BC-1 and BC-2), SD-induced bud set was prevented when R night breaks as short as 2 min were given in the middle of the night. When night breaks with 2 min of R were immediately followed by 2 min of FR, substantial reversibility of bud set was observed for BC-1 but not for BC-2. By comparing the effects of the R night breaks on bud set and the length of specific internodes, we determined that the R night breaks influenced internode elongation in two opposing ways. First, the addition of a R night break to the SD treatment prevented the cessation of internode elongation that is associated with bud set. Those internodes that would not have elongated under SDs (and would have been found within the terminal bud) elongated in the R treatment. Second, the R night breaks decreased internode length relative to the long-day (LD) control. In contrast to the clonal differences in reversibility that we observed for bud set, the decrease in internode length (i.e. the second effect of R) was R/FR reversible in both clones. Based on these results, we conclude that internode elongation is influenced by two distinct types of phytochrome-mediated response. The first response is a typical response to photpperiod, whereas the second response is a typical “end-of-day” response to light quality. Our results demonstrate that SD-induced bud set in black cottonwood is controlled by phytochrome but that clonal differences have an important influence on the R/FR reversibility of this response. The availability of an experimental system in which SD-induced bud set is R/FR reversible will be valuable for studying the physiological genetics of photoperiodism in trees.  相似文献   
75.
The 459-bp HindIII (pBN-4) and the 1732-bp Eco RI (pBNE8) fragments from the Brassica nigra genome were cloned and shown to be members of a dispersed repeat family. Of the three major diploid Brassica species, the repeat pBN-4 was found to be highly specific for the B. nigra genome. The family also hybridized to Sinapis arvensis showing that B. nigra had a closer relationship with the S. arvensis genome than with B. oleracea or B. campestris. The clone pBNE8 showed homology to a number of tRNA species indicating that this family of repeats may have originated from a tRNA sequence. The species-specific 459-bp repeat pBN-4 was localized on the B. nigra chromosomes using monosomic addition lines. In addition to the localization of pBN-4, the chromosomal distribution of two other species-specific repeats, pBN34 and pBNBH35 (reported earlier), was studied. The dispersed repeats pBN-4 and pBNBH35 were found to be present on all of the chromosomes, whereas the tandem repeat pBN34 was localized on two chromosomes.  相似文献   
76.
The two families of the order Apiales (Apiaceae and Araliaceae) represent a classic example of the difficulty in understanding evolutionary relationships between tropical-temperate family pairs. In Apiales, this problem is further compounded by phylogenetic confusion at almost every taxonomic level, including ordinal, interfamilial, and infrafamilial, due largely to difficulties in understanding trends in morphological evolution. Phylogenetic analyses of rbcL sequences were employed to resolve relationships at the ordinal and familial levels. The results of the ordinal analysis confirm the placement of Apiales in an expanded subclass Asteridae as the sister group to Pittosporaceae, and refute the traditional alliance of Apiales with Cornales and Rosidae. This study has also resolved relationships of a number of enigmatic genera, suggesting, for example, that Melanophylla, Aralidium, Griselinia, and Toricellia are close relatives of Apiales. Clarification of phylogenetic relationships has concomitantly provided insights into trends of morphological evolution, and suggests that the ancestral apialean taxon was probably bicarpellate, simple-leaved, woody, and paleotropical. Phylogenetic analysis at the family level suggests that apiaceous subfamily Hydrocotyloideae, often envisioned as an intermediate group between Apiaceae and Araliaceae, is polyphyletic, with some hydrocotyloids closely allied with Araliaceae rather than Apiaceae. With the exception of some hydrocotyloids, Apiaceae appear to be monophyletic. The relationship between Apiaceae and Araliaceae remains problematic. Although the shortest rbcL trees suggest that Apiaceae are derived from within a paraphyletic Araliaceae, this result is only weakly supported.  相似文献   
77.
Summary Two strains ofEeniella nana were examined for their partial base sequences of 18S and 26S rRNAs. In the partial base sequences of 18S rRNA (prositions 1451 through 1618, 168 bases) the strains ofE. nana have five, five, four and eleven base differences with those ofDekkera bruxellensis (type species).D. anomala (andBrettanomyces anomalus),D. naardenensis andD. custersiana, respectively. In the 26S rRNA partial base sequencings (positions 1611 through 1835, 225 bases and positions 493 through 622, 130 bases) the base differences were 46, 43, 34 and 40 and the percent similarities were 53–54, 51–54, 56–57 and 51–53, respectively. The sequence data obtained are discussed phylogenetically and taxonomically, especially on retention of the generic nameEeniella.This paper is dedicated to Professor Herman Jan Phaff in honor of his 50 years of active research which still continues.Significance of the coenzyme Q system in the classification of yeasts and yeast-like organisms. Part LVIII. For part LVII, see ref. [20].  相似文献   
78.
张广骅  李杭萍 《遗传学报》1995,22(3):223-229
控制大豆白花亲本籽粒脐色的基因有带R与r之分,带R基因的白花产本与紫花亲本杂交,F1代籽料出现蓝脐性状,其基因型为I-R-W1-tt。当控制脐色的基因有两对相差时(R、r;W1、w1)F2代籽粒脐色分离蓝脐与无色脐之比为9∶7。  相似文献   
79.
The salivary gland secretion in the dipteran Chironomus tentans is composed of approximately 15 different secretory proteins. The most well known of the corresponding genes are the four closely related Balbiani ring (BR) genes, in which the main part of each approximately 40-kb gene is composed of tandemly arranged repetitive units. Six of the seven additional secretory protein genes described share structural similarities with the BR genes and are members of the same BR multigene family. Here we report the identification of a new secretory protein gene, the spl2 gene, encoding the smallest component of the C. tentans salivary gland secretion. The gene has a corresponding mRNA length of approximately 0.7 kb and codes for a protein with a calculated molecular weight of 7,619 Da. The sp12 gene was characterized in seven Chironomus species. Based on a comparison of the orthologous gene sequences, we conclude that the sp12 gene has a repetitive structure consisting of diverged 21-by-long repeats. The repeat structure and the codon composition are similar to the so-called SR regions of the BR genes and the sp 12 gene may represent a diverged member of the BR multigene family. Correspondence to: L. Wieslander  相似文献   
80.
The complete sequence of the carp mitochondrial genome of 16,575 base pairs has been determined. The carp mitochondrial genome encodes the same set of genes (13 proteins, 2 rRNAs, and 22 tRNAs) as do other vertebrate mitochondrial DNAs. Comparison of this teleostean mitochondrial genome with those of other vertebrates reveals a similar gene order and compact genomic organization. The codon usage of proteins of carp mitochondrial genome is similar to that of other vertebrates. The phylogenetic relationship for mitochondrial protein genes is more apparent than that for the mitochondrial tRNA and rRNA genes.Correspondence to: F. Huang  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号