首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   7篇
  国内免费   39篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   19篇
  2018年   15篇
  2017年   10篇
  2016年   11篇
  2015年   15篇
  2014年   13篇
  2013年   24篇
  2012年   16篇
  2011年   30篇
  2010年   17篇
  2009年   22篇
  2008年   21篇
  2007年   16篇
  2006年   18篇
  2005年   17篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有344条查询结果,搜索用时 312 毫秒
151.
The GH4C1 strain of hormone-producing rat pituitary cells has specific receptors for the tripeptide thyrotropin-releasing hormone (TRH). Membranes prepared from GH4C1 cells show intrinsic tryptophan fluorescence which was quenched by low concentrations (10–100 nM) of TRH and Nτ-methyl TRH but not by biologically inactive analogs of TRH. Membranes from GH4C1 cells were subjected to thermal denaturation. A conformational transition was noted above 40°C and an irreversible denaturation was observed at 52°C. TRH-induced quenching of intrinsic fluorescence was lost completely in membranes previously incubated for 10 min at 30°C while loss of [3H]-TRH binding was only about 20% at this temperature. Collisional quenching by iodide revealed that about 38% of the tryptophanyl residues in GH4C1 membranes were exposed to solvent. Quenching by TRH occurred with a shift in wavelength maximum from 336 to 342 nm suggesting that few of the tryptophanyl residues quenched by the tripeptide are totally exposed. Membranes prepared from cells preincubated with 20 nM TRH for 48 h, in which TRH receptors were decreased to 30% of control values, showed no quenching of tryptophan fluorescence in response to freshly added TRH. We conclude that the TRH-receptor interaction in GH4C1 cells is associated with a change in membrane conformation that can be measured by differential spectrofluorometry of intrinsic tryptophan fluorescence.  相似文献   
152.
群体感应信号分子AI-2研究进展   总被引:9,自引:0,他引:9  
群体感应(QS)是细菌根据种群密度的变化调控基因表达,协调群体行为的机制。除具有种特异性的信号分子AI-1外,近年来发现一类新的信号分子AI-2在调控细菌基因表达中起重要作用。AI-2的结构和生物合成途径已被确定,其产生依赖于一种称为LuxS的蛋白。目前认为AI-2在细菌种间交流中起通用信号分子(universalsignal)的作用。了解细菌的QS调控过程以及种间细胞交流的新机制,有助于对细菌病害进行防治。  相似文献   
153.
Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.  相似文献   
154.
Bacterial quorum sensing and cell surface electrokinetic properties   总被引:4,自引:0,他引:4  
The hypothesis tested in this paper is that quorum sensing influences the microbial surface electrokinetic properties. Escherichia coli MG1655 and MG1655 LuxS- mutant (lacking quorum-sensing gene for Autoinducer synthase AI-2) were used for this study. AI-2 production (or lack of) in both strains was analyzed using the Vibrio harveyi bioassay. The levels of extracellular AI-2 with and without glucose in the growth medium were consistent with previously published work. The surface electrokinetic properties were determined for each strain of E. coli MG1655 by measuring the electrophoretic mobility using a phase amplitude light-scattering (PALS) Zeta potential analyser. The findings show that the surface charge of the cells is dependent upon the stage in the growth phase as well as the ability to participate in quorum sensing. In addition, significant differences in the electrophoretic mobility were observed between both strains of E. coli. These findings suggest that quorum sensing plays a significant role in the surface chemistry of bacteria during their growth.  相似文献   
155.
Homoserine lactone (HSL) is a ubiquitous product of metabolism. It is generated by all known biota during the editing of certain mischarged aminoacyl-tRNA reactions, and is also released as a product of quorum signal degradation by bacterial species expressing acyl-HSL acylases. Little is known about its environmental fate over long or short periods of time. The mammalian enzyme paraoxonase, which has no known homologs in bacteria, has been reported to degrade HSL via a lactonase mechanism. Certain strains of Variovorax and Arthrobacter utilize HSL as a sole source of nitrogen, but not as a sole source of carbon or energy. In this study, the enrichment and isolation of four strains of soil bacteria capable of utilizing HSL as a carbon and energy source are described. Phylogenetic analysis of these isolates indicates that three are distinct members of the genus Arthrobacter, whereas the fourth clusters within the non-clinical Burkholderia. The optimal pH for growth of the isolates ranged from 6.0 to 6.5, at which their HSL-dependent doubling times ranged from 1.4 to 4 h. The biodegradation of HSL by these 4 isolates far outpaced its chemical decay. HSL degradation by soil bacteria has implications for the consortial mineralization of acyl-homoserine lactones by bacteria associated with quorum sensing populations.  相似文献   
156.
许多革兰氏阴性菌通过产生N-酰基-高丝氨酸内酯(AHLs)类信号分子来调控某些性状的表达,即群体感应(quorum sensing)。假单胞菌是一种导致食品腐败的重要腐败细菌,也产生AHLs。本文研究了不同温度及碳源对食源假单胞菌AHLs产生的影响。结果表明,该假单胞菌在25℃条件下,产生两种AHL信号分子,而在4℃条件下,所产生的短链AHL分子消失,主要产生长链AHL分子。而且在不同碳源(葡萄糖,果糖,木糖,麦芽糖等)的培养基中生长,所产生的AHLs分子种类也不同。同时发现当pH>7.5时,AHLs的稳定性下降。由此得出,在不同的环境条件(碳源及温度)下假单胞菌所产生的AHLs种类不同。为进一步研究群体感应现象在食品腐败中的作用以及开发基于干扰腐败菌群体感应的新型食品防腐技术提供研究基础。  相似文献   
157.
In Pseudomonas aeruginosa, cell-cell communication based on acyl-homoserine lactone (HSL) quorum sensing molecules is known to coordinate the production of virulence factors and biofilms by the bacterium. Incidentally, these bacterial signals can also modulate mammalian cell behaviour. We report that 3O-C12-HSL can disrupt adherens junctions in human epithelial Caco-2 cells as evidenced by a reduction of the expression and distribution of E-cadherin and β-catenin. Using co-immunoprecipitation we also found that P. aeruginosa 3O-C12-HSL-treatment resulted in tyrosine hyperphosphorylation of E-cadherin, β-catenin, occludin and ZO-1. Similarly, serine and threonine residues of E-cadherin and ZO-1 became more phosphorylated after 3O-C12-HSL treatment. On the contrary, occludin and β-catenin underwent dephosphorylation on serine and threonine residues after exposition of 3O-C12-HSL. These changes in the phosphorylation state were paralleled by alteration in the structure of junction complexes and increased paracellular permeability. Moreover, pre-treatment of the Caco-2 cells with protein phosphatase and kinase inhibitors prevented 3O-C12-HSL-induced changes in paracellular permeability and interactions between occludin-ZO-1 and the E-cadherin-β-catenin. These findings clearly suggest that an alteration in the phosphorylation status of junction proteins are involved in the changes in cell junction associations and enhanced paracellular permeability, and that bacterial signals are indeed sensed by the host cells.  相似文献   
158.
159.
160.
Quorum sensing (QS) plays a crucial role in different stages of biofilm development, virulence production, and subsequently to the growth of bacteria in food environments. Biofilm mediated spoilage of food is one of the ongoing challenge faced by the food industry worldwide as it incurs substantial economic losses and leads to various health issues. In the present investigation, we studied the interference of quorum sensing, its regulated virulence functions, and biofilm in food-associated bacteria by colorant azorubine. In vitro bioassays demonstrated significant inhibition of QS and its coordinated virulence functions in Chromobacterium violaceum 12472 (violacein) and Pseudomonas aeruginosa PAO1 (elastase, protease, pyocyanin, and alginate). Further, the decrease in the production EPS (49–63%) and swarming motility (61–83%) of the pathogens was also recorded at sub-MICs. Azorubine demonstrated broad-spectrum biofilm inhibitory potency (50–65%) against Chromobacterium violaceum, Pseudomonas aeruginosa, E. coli O157:H7, Serratia marcescens, and Listeria monocytogenes. ROS generation due to the interaction between bacteria and azorubine could be responsible for the biofilm inhibitory action of the food colorant. Findings of the in vitro studies were well supported by molecular docking and simulation analysis of azorubine and QS virulence proteins. Azorubine showed strong binding to PqsA as compared to other virulent proteins (LasR, Vfr, and QscR). Thus, it is concluded that azorubine is a promising candidate to ensure food safety by curbing the menace of bacterial QS and biofilm-based spoilage of food and reduce economic losses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号