首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3735篇
  免费   318篇
  国内免费   120篇
  2024年   15篇
  2023年   76篇
  2022年   113篇
  2021年   122篇
  2020年   125篇
  2019年   141篇
  2018年   124篇
  2017年   109篇
  2016年   104篇
  2015年   127篇
  2014年   152篇
  2013年   289篇
  2012年   114篇
  2011年   160篇
  2010年   132篇
  2009年   147篇
  2008年   203篇
  2007年   187篇
  2006年   164篇
  2005年   162篇
  2004年   136篇
  2003年   129篇
  2002年   132篇
  2001年   96篇
  2000年   80篇
  1999年   79篇
  1998年   57篇
  1997年   65篇
  1996年   58篇
  1995年   53篇
  1994年   45篇
  1993年   46篇
  1992年   40篇
  1991年   20篇
  1990年   26篇
  1989年   36篇
  1988年   32篇
  1987年   24篇
  1986年   21篇
  1985年   36篇
  1984年   43篇
  1983年   28篇
  1982年   44篇
  1981年   26篇
  1980年   11篇
  1979年   10篇
  1978年   10篇
  1977年   4篇
  1976年   6篇
  1973年   5篇
排序方式: 共有4173条查询结果,搜索用时 15 毫秒
111.
In order to unravel the physiological, endocrine, and behavioral differences between gregarious and solitarious forms of the desert locust, Schistocerca gregaria (Forsk.) (Orthoptera, Acrididae), a constant supply of rather large numbers of solitary individuals has to be guaranteed. This represents a bottleneck, mainly because of the intensity of the labor involved and limited laboratory accommodation. The method we describe here substantially reduces the space and manpower needed. The survival rate we obtained in the solitarised population was relatively high, reaching about 55%. The optimal rearing temperature proved to be 32–36 °C. Cabbage leaves and oat flakes sufficed for feeding all year round. Special racks have been designed that enable high density stacking and easy handling. The solitarisation process was monitored over ten consecutive generations. Changes in morphometrics, eye stripes, color, and behavior were recorded, of which only morphometrics, temperature related development, and mortality are discussed. A shift towards the solitarious phase was recorded, with clear differences between gregarious, 1st generation and 7th to 10th generation solitarious locusts.  相似文献   
112.
113.
The adaptive significance of the emergence mode ofDioscorea japonica was studied with respect to initial plant size (seed, bulbil and tuber) and light intensity, using mathematical simulation based on Yokoi's (1976) model. Under 1.5% full sunlight conditions, plants emerging with only one leaf did not develop a shoot system throughout the growing period (Hori and Oshima, 1986). Simulation indicated that, for this species of plant under poor productive conditions, the optimal time for switch-over from the vegetative to reproductive growth phase to maximize the tuber weight at the end of the growing period, occurred immediately following the start of autotrophic growth. By means of shoot growth patterns, small and large size plants acquired the ability of shade tolerance and shade avoidance, respectively. Further, the life history ofD. japonica could be expressed as a flow chart based on plant size and light intensity data.  相似文献   
114.
We investigated the application of fungus Phallus impudicus loaded γ-Fe2O3 nanoparticles as a biosorbent for magnetic solid phase extractions of trace levels of Zn(II) and Cr(III) ions from natural samples before their measurements by inductively coupled plasma optical emission spectrometry. The characterization of magnetized P. impudicus was performed using the scanning electron microscope, the energy dispersive X-ray and Fourier transform infrared spectroscopy. Important experimental factors were investigated. The experimental results fitted well to the Langmuir adsorption model and pseudo-second order kinetic model. Limit of detections of targeted ions by magnetic solid phase extraction method based on use of P. impudicus were found as 10.5 ngL−1 and 12.6 ngL−1 respectively for Cr(III) and Zn(II). The sorption capacities of the biosorbent were 22.8 mgg−1 for Cr(III) and 25.6 mgg−1 for Zn(II). The preconcentration factors were achieved as 100 for both of ions. RSDs for inter- and intraday precisions were found as lower than 2.0% and 2.1% respectively for both of targeted ions. The accuracy of the recommended process was tested by recovery measurements on the certificated reference materials and successfully applied for quantification recoveries of Cr(III) and Zn(II) ions from water and food samples.  相似文献   
115.
116.
Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during the sodium storage reaction remain a confusing topic. Here, a novel hypercrosslinked polymerization approach is demonstrated to fabricate pyrrole/thiophene hypercrosslinked microporous copolymer and further give porous carbonaceous materials with accurately regulated N/S dual doping corresponding to starting feeding ratios. Significantly, the N doping contributes to the conductivity and surface wettability, while the S doping is bridged to build stable active sites, which can be electrochemically converted into mercaptan anions via faraday reaction and further enhancing reversible capacities. Meanwhile, the abundant S doping can also conduce to the expanded interlayer spacing to shorten the ions diffusion distance, thus optimizing the reaction kinetic. As a result, the N0.2S0.8‐micro‐dominant porous carbon delivers the highest reversible capacity of 521 mAh g?1 at 100 mA g?1 and excellent cyclic stability over 2000 cycles at 2000 mA g?1 with a capacity decay of 0.0145 mAh g?1 per cycle. This work is anticipated to provide an in‐depth understanding of capacitance contribution and illuminate the heteroatomic phase transformation during sodium storage reactions for doping carbonaceous anodes.  相似文献   
117.
The application of lithium (Li) metal anodes in rechargeable batteries is primarily restricted by Li dendrite growth on the metal's surface, which leads to shortened cycle life and safety concerns. Herein, well‐spaced nanotubes with ultrauniform surface curvature are introduced as a Li metal anode structure. The ultrauniform nanotubular surface generates uniform local electric fields that evenly attract Li‐ions to the surface, thereby inducing even current density distribution. Moreover, the well‐defined nanotube spacing offers Li diffusion pathways to the electroactive areas as well as the confined spaces to host deposited Li. These structural attributes create a unique electrodeposition manner; i.e., Li metal homogenously deposits on the nanotubular wall, causing each Li nanotube to grow in circumference without obvious sign of dendritic formation. Thus, the full‐cell battery with the spaced Li nanotubes exhibits a high specific capacity of 132 mA h g?1 at 1 C and an excellent coulombic efficiency of ≈99.85% over 400 cycles.  相似文献   
118.
Compared to conjugated polymers, small‐molecule organic semiconductors present negligible batch‐to‐batch variations, but presently provide comparatively low power conversion efficiencies (PCEs) in small‐molecular organic solar cells (SM‐OSCs), mainly due to suboptimal nanomorphology. Achieving precise control of the nanomorphology remains challenging. Here, two new small‐molecular donors H13 and H14 , created by fluorine and chlorine substitution of the original donor molecule H11 , are presented that exhibit a similar or higher degree of crystallinity/aggregation and improved open‐circuit voltage with IDIC‐4F as acceptor. Due to kinetic and thermodynamic reasons, H13 ‐based blend films possess relatively unfavorable molecular packing and morphology. In contrast, annealed H14 ‐based blends exhibit favorable characteristics, i.e., the highest degree of aggregation with the smallest paracrystalline π–π distortions and a nanomorphology with relatively pure domains, all of which enable generating and collecting charges more efficiently. As a result, blends with H13 give a similar PCE (10.3%) as those made with H11 (10.4%), while annealed H14 ‐based SM‐OSCs have a significantly higher PCE (12.1%). Presently this represents the highest efficiency for SM‐OSCs using IDIC‐4F as acceptor. The results demonstrate that precise control of phase separation can be achieved by fine‐tuning the molecular structure and film formation conditions, improving PCE and providing guidance for morphology design.  相似文献   
119.
The temperature‐dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene‐based devices. However, there is little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for nonfullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T‐2DT with two NFAs, O‐IDTBR and O‐IDFBR. The monotectic phase behavior inferred from differential scanning calorimetry provides qualitative insight into the interplay between solid–liquid and liquid–liquid demixing. Transient absorption spectroscopy suggests that geminate recombination dominates charge decay and that the decay rate is insensitive to composition, corroborated by negligible changes in open‐circuit voltage. Exciton lifetimes are also insensitive to composition, which is attributed to the signal being dominated by acceptor excitons which are formed and decay in domains of similar size and purity irrespective of composition. A hierarchical morphology is observed, where the composition dependence of size scales and scattering intensity from resonant soft X‐ray scattering (R‐SoXS) is dominated by variations in volume fractions of polymer/polymer‐rich domains. Results suggest an optimal morphology where polymer crystallite size and connectivity are balanced, ensuring a high probability of hole extraction via such domains.  相似文献   
120.
Additives are widely adopted for efficient, stable, and hysteresis‐free perovskite solar cells and play an important role in various breakthroughs of perovskite solar cells (PSCs). Herein the various additives adopted for PSCs are reviewed and their functioning mechanism and influence on device performance is described. The main roles of additives, modulating morphology of perovskite films, stabilizing phase of formamidinium (FA) and cesium (Cs)‐based perovskites, adjusting energy level alignment in PSCs, suppressing nonradiative recombination in perovskites, eliminating hysteresis, enhancing operational stability of PSCs, are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号