首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1207篇
  免费   131篇
  国内免费   298篇
  1636篇
  2024年   5篇
  2023年   13篇
  2022年   17篇
  2021年   48篇
  2020年   42篇
  2019年   47篇
  2018年   23篇
  2017年   33篇
  2016年   40篇
  2015年   40篇
  2014年   47篇
  2013年   70篇
  2012年   41篇
  2011年   65篇
  2010年   40篇
  2009年   66篇
  2008年   80篇
  2007年   91篇
  2006年   71篇
  2005年   71篇
  2004年   69篇
  2003年   54篇
  2002年   58篇
  2001年   65篇
  2000年   57篇
  1999年   58篇
  1998年   58篇
  1997年   27篇
  1996年   33篇
  1995年   36篇
  1994年   25篇
  1993年   20篇
  1992年   37篇
  1991年   15篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   10篇
  1986年   10篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   8篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有1636条查询结果,搜索用时 15 毫秒
141.
Bombelli  A.  Gratani  L. 《Photosynthetica》2003,41(4):619-625
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (P N) and stomatal conductance (g s) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum P N and g s, although P N was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (1) during the drought period (–3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as 1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of 1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus.  相似文献   
142.
143.
Enzymology of gallotannin and ellagitannin biosynthesis   总被引:2,自引:0,他引:2  
Niemetz R  Gross GG 《Phytochemistry》2005,66(17):2001-2011
Gallotannins and ellagitannins, the two subclasses of hydrolyzable tannins, are derivatives of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose. Enzyme studies with extracts from oak leaves (Quercus robur, syn. Quercus pedunculata; Quercus rubra) and from staghorn sumac (Rhus typhina) revealed that this pivotal intermediate is synthesized from beta-glucogallin (1-O-galloyl-beta-D-glucopyranose) by a series of strictly position-specific galloylation steps, affording so-called 'simple' gallotannins, i.e., mono- to pentagallyoylglucose esters. Besides its role as starter molecule, beta-glucogallin was also recognized as the principal energy-rich acyl donor required in these transformations. Subsequent pathways to 'complex' gallotannins have recently been elucidated by the isolation of five different enzymes from sumac leaves that were purified to apparent homogeneity. They catalyzed the beta-glucogallin-dependent galloylation of pentagallyoylglucose to a variety of hexa- and heptagalloylglucoses, plus several not yet characterized higher substituted analogous galloylglucoses. With respect to the biosynthesis of ellagitannins, postulates that had been formulated already decades ago were proven by the purification of a new laccase-like phenol oxidase from leaves of fringe cups (Tellima grandiflora) that regio- and stereospecifically oxidized pentagallyoylglucose to the monomeric ellagitannin, tellimagrandin II. This compound was further oxidized by a similar but different laccase-like oxidase to yield a dimeric ellagitannin, cornusiin E.  相似文献   
144.
Although there have been numerous studies of California upland oak regeneration and growth there has been no research investigating oak sapling growth in riparian environments. This study looks at the growth response of young valley oak (Quercus lobata Nee), a dominant late successional riparian species in California, across environmental variation on a floodplain. Growth was measured over the course of three years at four different sites. The sites were chosen to represent the range of successional stages and surface age. Growth was significantly higher on younger, unforested sites. There was no difference in growth rate in the two forested sites (early successional cottonwood willow forest and late successional mature oak forest). Herbivory was highest in the cottonwood willow forest, where density of young oaks was also highest. The impact of flooding was measured on the youngest floodplain surface, an open floodplain restoration site where acorns were planted the year our study began. There was a significant negative impact of flooding on sapling growth in all but the first year of growth. Taken together these results suggest that existing forest trees and flooding both inhibit the growth of valley oaks on the floodplain, and that restoration in open sites may be more successful than restoration under an existing canopy.  相似文献   
145.
Inhibition of canopy tree recruitment beneath thickets of the evergreen shrubs Rhododendron maximum L. and Kalmia latifolia L. has long been observed in Southern Appalachian forests, yet the mechanisms of this process remain unresolved. We present a first-year account of suppression of oak seedlings in relation to Rhododendron and Kalmia basal area, light and resource availability, seedling performance and the rates of seedling damage (i.e., herbivory). We found no evidence of first-year seedling suppression or significant resource deficiencies beneath thickets of K. latifolia in mature mixed hardwood stands. Suppression beneath R. maximum was apparent during the first growing season. We found that seedling biomass, light availability prior to canopy closure, and seedling tissue C:N ratios were negatively correlated with R. maximum basal area. Basal area of R. maximum was positively correlated with seedling mortality rates, soil [Al], and early-growing season leaf herbivory rates. Seedling growth was positively correlated with light and tissue C:N, while negatively correlated with soil [Al]. Overall, our results support the inhibition model of shade-mediated carbon limitation beneath dense understory shrubs and indicate the potential importance of herbivory and aluminum toxicity as components of a suppression mechanism beneath R. maximum thickets. We present a causal model of first year inhibition beneath R. maximum in the context of our findings and the results of prior studies.  相似文献   
146.
147.
Throughout the Middle Ages forests in Flanders (northern Belgium) experienced a dramatic human influence. Forests were logged for wood supply and converted to arable land. The structure of the remaining forests was altered. This, combined with the tempering influence of the Atlantic climate, results in conditions that are suboptimal for dendrochronological research. Tree-ring series of Quercus robur and Q. petraea of timber from medieval archaeological sites are often short, show abrupt growth-rate variations and are complacent. The question arises whether tree-ring series of this type are potential records of past management and whether they could constitute the basis of a reference chronology for archaeological dating. During six archaeological excavations in and around the medieval town of Ypres, cross-sections were collected. The tree-ring series could be dated back to the 12th–14th centuries, using reference chronologies from surrounding regions. The growth pattern of the short sequences displays a high similarity to tree-ring series from modern coppice. For the first time, it has been confirmed that dendrochronological analysis in Flanders is possible and can provide valuable information on medieval forest use and structure.  相似文献   
148.
The inverse relationship between numbers of stomata (stomatal frequency) on tree leaves and ambient CO2 concentration is increasingly applied for reconstructing past atmospheric CO2 levels. The abundance of leaf remains of Quercus robur in Holocene peat and lake deposits in Europe makes this species potentially suitable for high-resolution stomatal frequency analysis. In order to quantify the CO2 responsiveness of the species, the behavior of the stomatal index for Q. robur during the current anthropogenic CO2 increase is determined on the basis of buried, herbarium and modern leaf material from the Netherlands. The stomatal index (SI), expressing the ratio of the number of stomata in a given area divided by the total number of stomata and other epidermal cells in that same area, is used in order to minimize influences on stomatal frequency of environmental conditions other than CO2. The sigmoid SI response pattern recorded for Q. robur resembles that of the closely related species Q. petraea, although there is a difference in the timing of the response limitation of the two species to increasing atmospheric CO2. For calibration purposes only the linear phase of the sigmoidal response curve is taken into consideration in the presented CO2 response model, which allows confident combination of Q. robur and Q. petraea over the interval from 290 to 325 ppmv CO2. The model is conservative in reconstructing past CO2 mixing ratios outside the range of monitored response. As a result of the observed SI response limit, the model predicts CO2 levels below 325 ppmv with a mean error of 10.2 ppmv, whereas higher CO2 levels are underestimated.  相似文献   
149.
150.
Here, a conceptual model is presented for the development of Phytophthora disease in pedunculate oak. The model is presented using the causal loop diagram tool and gives an overview of how various abiotic and biotic factors, such as soil moisture, nutrient availability and mycorrhizal colonization, may affect the reproduction and the infective capacity of soil-borne Phytophthora species, the susceptibility of the host and subsequent disease development. It is suggested that the link between the root damage caused by Phytophthora species and overall tree vitality is in the assimilation and allocation of carbon within the plants. The potential impact of environmental factors on these processes is discussed. The model is presented with reference to scenarios related to variation in soil moisture and nutrient availability. The need for species-specific validation of the model and the implications of the model are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号