全文获取类型
收费全文 | 44379篇 |
免费 | 17388篇 |
国内免费 | 9篇 |
专业分类
61776篇 |
出版年
2023年 | 29篇 |
2022年 | 29篇 |
2021年 | 449篇 |
2020年 | 2822篇 |
2019年 | 4332篇 |
2018年 | 4603篇 |
2017年 | 4584篇 |
2016年 | 4289篇 |
2015年 | 4150篇 |
2014年 | 4096篇 |
2013年 | 4429篇 |
2012年 | 3849篇 |
2011年 | 3998篇 |
2010年 | 3494篇 |
2009年 | 2335篇 |
2008年 | 2494篇 |
2007年 | 1937篇 |
2006年 | 1940篇 |
2005年 | 1642篇 |
2004年 | 1312篇 |
2003年 | 1399篇 |
2002年 | 1192篇 |
2001年 | 925篇 |
2000年 | 485篇 |
1999年 | 308篇 |
1998年 | 42篇 |
1997年 | 38篇 |
1996年 | 41篇 |
1995年 | 42篇 |
1994年 | 37篇 |
1993年 | 47篇 |
1992年 | 35篇 |
1991年 | 25篇 |
1990年 | 21篇 |
1989年 | 21篇 |
1988年 | 31篇 |
1987年 | 27篇 |
1986年 | 21篇 |
1985年 | 19篇 |
1984年 | 19篇 |
1983年 | 18篇 |
1982年 | 22篇 |
1981年 | 20篇 |
1980年 | 20篇 |
1979年 | 19篇 |
1976年 | 16篇 |
1975年 | 11篇 |
1974年 | 14篇 |
1973年 | 11篇 |
1972年 | 12篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
102.
A Durable Alternative for Proton‐Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s
Dan Zhao Jinhuan Li Min‐Kyu Song Baolian Yi Huamin Zhang Meilin Liu 《Liver Transplantation》2011,1(2):203-211
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications. 相似文献
103.
Thomas P. Brennan Pendar Ardalan Han‐Bo‐Ram Lee Jonathan R. Bakke I‐Kang Ding Michael D. McGehee Stacey F. Bent 《Liver Transplantation》2011,1(6):1169-1175
Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO2, we are able to grow QDs of adjustable size which act as sensitizers for solid‐state QD‐sensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1‐10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'‐tetrakis‐(N,N‐di‐p methoxyphenylamine) 9,9'‐spirobifluorene (spiro‐OMeTAD) as the solid‐state hole conductor. The ALD approach described here can be applied to fabrication of quantum‐confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. 相似文献
104.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects. 相似文献
105.
Zhongkai Hao Qi Chen Wenrui Dai Yinjuan Ren Yin Zhou Jinlin Yang Sijie Xie Yanbin Shen Jihong Wu Wei Chen Guo Qin Xu 《Liver Transplantation》2020,10(10)
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage. 相似文献
106.
107.
108.
Ansuman Panda Debashis Jena Mrinal Kanti Datta Janmejay Parhi Radhakrishnan Kizhakke Veettil Pramod Kumar Pandey 《Zeitschrift fur angewandte Ichthyologie》2019,35(6):1242-1248
The present study explains the intraspecific variation in Indian Hill trout (Barilius bendelisis) on the basis of image based truss network system and D‐loop region of mtDNA. A total of 210 samples were collected from three different rivers (Teesta, Kameng and Myntudu River) of North East India in Indo‐Burma Biodiversity Hotspot. By using the software applications (tpsDig version 2.1 and PAST), a total of 25 morphometric measurements were generated from 10 landmarks. The Analysis of Variance (ANOVA), Factor Analysis (FA) and Discriminate Function Analysis (DFA) showed, out of the total variations, factor 1 explained 46.74% while factor 2 and factor 3 explained 27.14% and 11.92%, respectively. Using these variables 83.33% of the cross‐validated specimens were classified into distinct groups. Analysis of Molecular Variance (AMOVA) and pairwise Fst value for D‐loop region of mtDNA also showed high to medium level of genetic variation among the stocks and within the stocks. We conclude that the observed discrete stocks might be the result of changing environmental conditions in different rivers of the hotspot as the rivers are present at different altitudinal labels. It is also believed that the variation might be due to the construction of barrages across the river which hinder the mixing among the stocks. 相似文献
109.
Strong barriers to genetic exchange can exist at divergently selected loci, whereas alleles at neutral loci flow more readily between populations, thus impeding divergence and speciation in the face of gene flow. However, ‘divergence hitchhiking’ theory posits that divergent selection can generate large regions of differentiation around selected loci. ‘Genome hitchhiking’ theory suggests that selection can also cause reductions in average genome‐wide rates of gene flow, resulting in widespread genomic divergence (rather than divergence only around specific selected loci). Spatial heterogeneity is ubiquitous in nature, yet previous models of genetic barriers to gene flow have explored limited combinations of spatial and selective scenarios. Using simulations of secondary contact of populations, we explore barriers to gene flow in various selective and spatial contexts in continuous, two‐dimensional, spatially explicit environments. In general, the effects of hitchhiking are strongest in environments with regular spatial patterning of starkly divergent habitat types. When divergent selection is very strong, the absence of intermediate habitat types increases the effects of hitchhiking. However, when selection is moderate or weak, regular (vs. random) spatial arrangement of habitat types becomes more important than the presence of intermediate habitats per se. We also document counterintuitive processes arising from the stochastic interplay between selection, gene flow and drift. Our results indicate that generalization of results from two‐deme models requires caution and increase understanding of the genomic and geographic basis of population divergence. 相似文献
110.
Characterization of phytoplankton assemblages in a tropical coastal environment using Kohonen self‐organizing map 下载免费PDF全文
Isimemen Osemwegie Julie E. Niamien‐Ebrottié Mathieu Y. J. Koné Allassane Ouattara Jean Biemi Barbara Reichert 《African Journal of Ecology》2017,55(4):487-499
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems. 相似文献