首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2523篇
  免费   243篇
  国内免费   126篇
  2024年   3篇
  2023年   22篇
  2022年   56篇
  2021年   74篇
  2020年   63篇
  2019年   64篇
  2018年   72篇
  2017年   45篇
  2016年   90篇
  2015年   115篇
  2014年   106篇
  2013年   129篇
  2012年   69篇
  2011年   170篇
  2010年   146篇
  2009年   151篇
  2008年   150篇
  2007年   176篇
  2006年   159篇
  2005年   200篇
  2004年   161篇
  2003年   119篇
  2002年   113篇
  2001年   39篇
  2000年   49篇
  1999年   45篇
  1998年   51篇
  1997年   36篇
  1996年   24篇
  1995年   24篇
  1994年   38篇
  1993年   20篇
  1992年   18篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   11篇
  1984年   13篇
  1983年   9篇
  1982年   11篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1975年   1篇
排序方式: 共有2892条查询结果,搜索用时 437 毫秒
81.
Graphics processing unit (GPU) is becoming a powerful computational tool in science and engineering. In this paper, different from previous molecular dynamics (MD) simulation with pair potentials and many-body potentials, two MD simulation algorithms implemented on a single GPU are presented to describe a special category of many-body potentials – bond order potentials used frequently in solid covalent materials, such as the Tersoff potentials for silicon crystals. The simulation results reveal that the performance of GPU implementations is apparently superior to their CPU counterpart. Furthermore, the proposed algorithms are generalised, transferable and scalable, and can be extended to the simulations with general many-body interactions such as Stillinger–Weber potential and so on.  相似文献   
82.
In order to investigate the ordered structure of nematic liquid crystal molecules confined in a nanoslit, we carried out a classical molecular dynamics simulation of uniaxial prolate Gay–Berne particles in a flat, structureless slit at several temperatures. When the slit gap is so small that the system is not assumed as the bulk, particles in the slit possess orientationally ordered structures different from ones in the bulk. The weak spacial orientational correlation existed when the temperature corresponded to the isotropic phase in the bulk system. The first order isotropic–nematic phase transition was not clearly observed and the transitional phenomenon of the creation and annihilation of the uniaxial domains were observed. These results revealed that the ordered structure depends on the number of particles, in other words, cell size, and that the system with 100,000 or more particles gives reasonable results of an infinitely wide slit. The number of particles is converted into up to 220 particles of the length of the base.  相似文献   
83.
Yangmin Ma  Hao Wu  Jin Zhang  Yanchao Li 《Chirality》2013,25(10):656-662
A series of single isomers tetrahydro‐β‐carboline diketopiperazines were stereoselectively synthesized starting from l ‐tryptophan methyl ester hydrochloride and six aldehydes through a four‐step reaction including Pictet‐Spengler reaction, crystallization‐induced asymmetric transformations (CIAT), Schotten‐Baumann reaction, and intramolecular ester amidation. The chemical structures were characterized by nuclear magnetic resonance (NMR) and elemental analysis, among which two compounds were determined by x‐ray single crystal diffraction. Moreover, antimicrobial activities of all the compounds were also tested. Chirality 25:656–662, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
84.
Polycystin-2 (PC2) trafficking has been proposed to be a result of the interaction of PIGEA14 with PC2 as a function of the phosphorylation state of PC2. Here, we investigated the interaction of PIGEA14 with the C-terminal part of polycystin-2 wild type (cPC2wt) and the pseudophosphorylated mutant (cPC2S812D) to first, quantify the binding affinity between cPC2 and PIGEA14 and second, to elucidate the influence of PC2 phosphorylation on PIGEA14 binding. Solid supported membranes composed of octanethiol/1,2-dioleoyl-sn-glycero-3-phosphocholine doped with the receptor lipid DOGS–NTA–Ni were used to attach PIGEA14 to the membrane via its hexahistidine tag. By means of the quartz crystal microbalance technique, binding affinities as well as kinetic constants of the interaction were extracted in a label-free manner by applying the scaled particle theory. The results show that the dissociation constant of cPC2 to PIGEA14 is in the 10 nM regime providing strong evidence of a very specific interaction of cPC2 with PIGEA14. The interaction of cPC2wt is twofold larger than that of cPC2S812D. The moderate higher binding affinity of cPC2wt to PIGEA14 is discussed in light of PC2 trafficking to the plasma membrane.  相似文献   
85.
Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.  相似文献   
86.
对香豆酸∶CoA连接酶(4-coumarate: coenzyme A ligase,4CL)是植物苯丙烷类代谢途径中的一个重要的酶.4CL以肉桂酸衍生物(香豆酸、咖啡酸、阿魏酸等)、ATP和CoA为底物合成相应的酰基-CoA酯,这些酰基-CoA酯是一系列重要化合物(如木质素)的前体.4CL的酶催化反应分两步进行:第一步以肉桂酸衍生物和Mg2 -ATP为底物合成酰基-AMP,第二步用CoA取代AMP,产生酰基-CoA酯,催化过程中酶的构象产生明显的变化.因为4CL在木质素的合成中所起的作用,这个酶是通过蛋白质工程方法改进林产品质量的重要靶标.我们通过X射线衍射技术,解析了毛白杨对香豆酸∶CoA连接酶1(Pt4CL1)与其中间产物对香豆酰-AMP的复合物晶体结构,与同家族成员结构比对,确定所获得的蛋白质结构为Pt4CL1催化第二步反应,即酰基-CoA酯合成的构象.结构分析表明:His-234残基在Pt4CL1的酶催化机理中起着多重作用,即通过侧链与AMP磷酸基团形成氢键,降低磷酸基团的负电荷,催化CoA的亲核取代反应;侧链可以采取两种不同的构象以调节CoA进入Pt4CL1的催化中心;His-234的侧链还可能夺取CoA巯基的质子,从而增强CoA的亲核反应活性.突变体酶活数据结果也显示His-234对Pt4CL1的活性非常重要,是Pt4CL1催化中心的活性残基.  相似文献   
87.
A bio-flocculant was isolated from the culture broth of Asp. sojae AJ 7002. It was partially purified by acetone or ethanol precipitation, by ion-exchange and gel chromatography, and by dialysis. The isolated polymer possessed chemical characteristics of a poly-hexosamine and a protein. Glucosamine and galactosamine were not acetylated. The flocculant contained 2-ketogluconic acid, but sulfur or phosphorus was not detected. This flocculant was thermo-stable and its activity varied with pH. It was suggested that the hexosamine moiety in the polymer played a major role in bio-flocculation, assisted by protein portion in enlargement of the molecular weight of the flocculant, and by 2-ketogluconic acid in endowing it with amphoteric character.  相似文献   
88.
Biocompatibility of polymers is an important parameter for the successful application of polymers in tissue engineering. In this work, quartz crystal microbalance (QCM) devices were used to follow the adhesion of NIH 3T3 fibroblasts to QCM surfaces modified with fibronectin (FN) and poly-D -lysine (PDL). The variations in sensor resonant frequency (Δf) and motional resistance (ΔR), monitored as the sensor signal, revealed that cell adhesion was favored in the PDL-coated QCMs. Fluorescence microscopy images of seeded cells showed more highly spread cells on the PDL substrate, which is consistent with the results of the QCM signals. The sensor signal was shown to be sensitive to extracellular matrix (ECM)-binding motifs. Ethylenediaminetetraacetic acid (EDTA) and soluble Gly-Arg-Gly-Asp-Ser (GRGDS) peptides were used to interfere with cell-ECM binding motifs onto FN-coated QCMs. The acquired acoustic signals successfully showed that in the presence of 30 mM EDTA or 1 mM GRGDS, cell adhesion is almost completely abolished due to the inhibition/blocking of integrin function by these compounds. The results presented here demonstrate the potential of the QCM sensor to study cell adhesion, to monitor the biocompatibility of polymers and materials, and to assess the effect of adhesion modulators. QCM sensors have great potential in tissue engineering applications, as QCM sensors are able to analyze the biocompatibility of surfaces and it has the added advantage of being able to evaluate, in situ and in real time, the effect of specific drugs/treatments on cells.  相似文献   
89.
Duplex RNA adopts an A‐form structure, while duplex DNA interconverts between the A‐ and B‐forms depending on the environment. The C2′‐endo sugar pucker seen in B‐form DNA can occur infrequently in ribose sugars as well, but RNA is not understood to assume B‐form conformations. Through analysis of over 45,000 stacked single strand dinucleotide (SSD) crystal structure conformations, this study demonstrates that RNA is capable of adopting a wide conformational range between the canonical A‐ and B‐forms at the localized SSD level, including many B‐form‐like conformations. It does so through C2′‐endo ribose conformations in one or both nucleotides, and B‐form‐like neighboring base stacking patterns. As chemical reactions on nucleic acids involve localized changes in chemical bonds, the understanding of how enzymes distinguish between DNA and RNA nucleotides is altered by the energetic accessibility of these rare B‐form‐like RNA SSD conformations. The existence of these conformations also has direct implications in parametrization of molecular mechanics energy functions used extensively to model nucleic acid behavior., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 65–82, 2016  相似文献   
90.
Voltage‐gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na+ ≈ Li+ ≫ K+, Ca2+, Mg2+) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号