首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15080篇
  免费   1035篇
  国内免费   1303篇
  17418篇
  2024年   18篇
  2023年   168篇
  2022年   198篇
  2021年   258篇
  2020年   329篇
  2019年   395篇
  2018年   405篇
  2017年   418篇
  2016年   421篇
  2015年   494篇
  2014年   929篇
  2013年   1217篇
  2012年   920篇
  2011年   915篇
  2010年   754篇
  2009年   921篇
  2008年   939篇
  2007年   918篇
  2006年   825篇
  2005年   798篇
  2004年   626篇
  2003年   596篇
  2002年   469篇
  2001年   393篇
  2000年   356篇
  1999年   381篇
  1998年   318篇
  1997年   268篇
  1996年   296篇
  1995年   247篇
  1994年   240篇
  1993年   181篇
  1992年   146篇
  1991年   77篇
  1990年   62篇
  1989年   49篇
  1988年   42篇
  1987年   49篇
  1986年   46篇
  1985年   47篇
  1984年   39篇
  1983年   30篇
  1982年   35篇
  1981年   27篇
  1980年   25篇
  1979年   21篇
  1978年   25篇
  1977年   20篇
  1976年   19篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
101.
Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (Steptoe/Morex) was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.  相似文献   
102.
A genetic linkage map of Theobroma cacao (cocoa) has been constructed from 131 backcross trees derived from a cross between a single tree of the variety Catongo and an F1 tree from the cross of Catongo by Pound 12. The map comprises 138 markers: 104 RAPD loci, 32 RFLP loci and two morphologic loci. Ten linkage groups were found which cover 1068 centimorgans (cM). Only six (4%) molecular-marker loci show a significant deviation from the expected 11 segregation ratio.The average distance between two adjacent markers is 8.3 cM. The final genome-size estimates based on two-point linkage data ranged from 1078 to 1112 cM for the cocoa genome. This backcross progeny segregates for two apparently single gene loci controlling (1) anthocyanidin synthesis (Anth) in seeds, leaves and flowers and (2) self-compatibility (Autoc). The Anth locus was found to be 25 cM from Autoc and two molecular markers co-segregate with Anth. The genetic linkage map was used to localize QTLs for early flowering, trunk diameter, jorquette height and ovule number in the BC1 generation using both single-point ANOVA and interval mapping. A minimum number of 2–4 QTLs (P<0.01) involved in the genetic expression of the traits studied was detected. Coincident map locations of a QTL for jorquette height and trunk diameter suggests the possibility of pleiotropic effects in cocoa for these traits. The combined estimated effects of the different mapped QTLs explained between 11.2% and 25.8% of the phenotypic variance observed in the BC1 population.  相似文献   
103.
The additive main effects and multiplicative interaction (AMMI) model has emerged as a powerful analytical tool for genotype x environment studies. The objective of the present study was to assess its value in quantitative trait locus (QTL) mapping. This was done through the analysis of a large two-way table of genotype-by-environment data of barley (Hordeum vulgare L.) grain yields, where the genotypes constituted a genetic population suitable for mapping studies. Grain yield data of 150 doubled haploid lines derived from the Steptoe x Morex cross, and the two parental lines, were taken by the North American Barley Genome Mapping Project (NABGMP) at 16 environments throughout the barley production areas of the USA and Canada. Four regions of the genome were responsible for most of the differential genotypic expression across environments. They accounted for approximately 50% of the genotypic main effect and 30% of the genotype x environment interaction (GE) sums of squares. The magnitude and sign of AMMI scores for genotypes and sites facilitate inferences about specific interactions. The parallel use of classification (cluster analysis of environments) and ordination (principal component analysis of GE matrix) techniques allowed most of the variation present in the genotype x environment matrix to be summarized in just a few dimensions, specifically four QTLs showing differential adaptation to four clusters of environments. Thus, AMMI genotypic scores, when the genotypes constituted a population suitable for QTL mapping, could provide an adequate way of resolving the magnitude and nature of QTL x environment interactions.Ignacio Romagosa was on sabbatical leave from the University of Lleida and the Institut de Recerca i Tecnologia Agroalimentàries, Lleida, Spain, when this study was conducted  相似文献   
104.
Primers complementary to simple sequence repeats (SSRs) and with variable three-base anchors at their 5 end, were used in PCR analyses to compare pooled DNA samples from various Brassica napus and B. rapa cultivars. Amplification products were resolved on polyacrylamide gels and detected by silver-nitrate staining. The resulting banding patterns were highly repeatable between replicate PCRs. Two of the primers produced polymorphisms at 33 and 23 band positions, respectively, and could each discriminate 16 of the 20 cultivars studied. Combined use of both primers allowed all 20 cultivars to be distinguished. The UPGMA dendrogram, based on the cultivar banding profiles, demonstrated clustering on the basis of winter/spring growth habit, high/low glucosinolate content, and cultivar origin (i.e. the breeder involved). Intracultivar polymorphism was investigated using a minimum of ten individuals for each cultivar and was found to vary considerably between cultivars. It is concluded that anchored SSR-PCR analysis is a highly informative and reproducible method for fingerprinting oilseed rape populations, but that intra-cultivar variation should be investigated before using banding profiles from pooled samples for the identification of individuals.  相似文献   
105.
Rao-Blackwellisation of sampling schemes   总被引:15,自引:0,他引:15  
  相似文献   
106.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   
107.
Amplification of thebar gene usingTaq DNA polymerase in PCR is often not successful, possibly due tobar's high GC content. We describe a PCR protocol in which reliable amplification at a sensitivity of one gene copy per genome (in this study, barley) present in the reaction was achieved using a novel pair of primers and Expandtm High Fidelity DNA polymerase mix (Boehringer Mannheim). This method should allow for rapid screening of plants putatively transformed withbar.  相似文献   
108.
Arthropod prey are expected to be more vulnerable to their predators immediately following molt. The effects of springtail (Isotoma carpenteri) postmolt vulnerability on interactions with a pseudoscorpion predator were examined in the laboratory. Springtails exposed to vials pretreated with pseudoscorpions (Apochthonius minimus) delayed molting compared to those prey that were exposed to vials pretreated only with springtails. Although their escape ability (measured as distance jumped) was unaffected by molt condition, postmolt springtails were more profitable in terms of reduced predator handling time following capture. Despite this,A. minimus did not distinguish between postmolt and intermolt prey presented at either end of a T-maze.  相似文献   
109.
Because of concern for cell damage, very low agitation energy inputs have been used in industrial animal cell bioreactors, typical values being two orders of magnitude less than those found in bacterial fermentations. Aeration rates are also very small. As a result, such bioreactors might be both poorly mixed and also unable to provide the higher oxygen up-take rates demanded by more intensive operation. This paper reports experimental studies both of K L a and of mixing (via pH measurements) in bioreactors up to 8 m3 at Wellcome and of scaled down models of such reactors at Birmingham. Alongside these physical measurements, sensitivity of certain cell lines to continuously controlled dO2 has been studied and the oxygen up-take rates measured in representative growth conditions. An analysis of characteristic times and mixing theory, together with other recent work showing that more vigorous agitation and aeration can be used especially in the presence of Pluronic F-68, indicates ways of improving their performance. pH gradients offer a special challenge.  相似文献   
110.
Saccharum robustum Brandes & Jesw. ex Grassl has been suggested as the immediate progenitor species of cultivated sugarcane (S. officinarum L.) [4]. Chromosome pairing and assortment in these two species were previously studied by genetic analysis of single-dose DNA markers in parents in and 44 F1 progeny of a cross between euploid, meiotically regular 2n=80S. officinarum LA Purple andS. robustum Mol 5829 [2]. This same population was subsequently clonally propagated and evaluated in replicated trials for quantitative traits important to sugarcane breeders. Numbers of stalks, tasseled stalks, and stalks with smut, and the average diameter of two stalks were determined one day prior to harvest. At harvest, plant material from each plot was weighed and evaluated for pol (sucrose content) and fiber percentages. Clones were significantly different (P<0.01) for all traits analyzed. Associations of 83 single-dose arbitrarily primed PCR genetic markers with quantitative trait loci (QTL) of recorded traits was determined by single-factor ANOVA, and multiple regression. QTL analysis revealed markers significantly (P<0.05) associated with the expression of each trait analyzed. Markers associated with QTL after multiple regression were tested for digenic linear × linear epistatic interactions. The various multilocus models explained between 23% and 58% of the total phenotypic variation and 32% and 76% of the genotypic variation for the various traits. Digenic interactions were uncommon. Implications for marker-assisted selection in sugarcane and sugarcane domestication are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号