首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3238篇
  免费   681篇
  国内免费   345篇
  2024年   24篇
  2023年   131篇
  2022年   167篇
  2021年   262篇
  2020年   235篇
  2019年   198篇
  2018年   170篇
  2017年   161篇
  2016年   161篇
  2015年   180篇
  2014年   258篇
  2013年   228篇
  2012年   224篇
  2011年   197篇
  2010年   130篇
  2009年   189篇
  2008年   155篇
  2007年   153篇
  2006年   178篇
  2005年   140篇
  2004年   104篇
  2003年   82篇
  2002年   81篇
  2001年   101篇
  2000年   47篇
  1999年   60篇
  1998年   48篇
  1997年   38篇
  1996年   33篇
  1995年   27篇
  1994年   24篇
  1993年   16篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   8篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   7篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有4264条查询结果,搜索用时 15 毫秒
21.
One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H 2) based on clonal means ranged from moderately high to high (0.50–0.90) for the traits studied, with H 2 values varying over age. The H 2 estimates reflected greater environmental noise in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3–4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.  相似文献   
22.
A cross between the open-pollinated Brassica oleracea cabbage cultivar Wisconsin Golden Acre and the hybrid broccoli cultivar Packman was used with molecular markers to investigate the genetic control of morphological variation. Twenty-two traits derived from leaf, stem, and flowering measurements were analyzed in 90 F2 individuals that were also classified for genotype by restriction fragment length polymorphism (RFLP) markers. Seventy-two RFLP loci, which covered the mapped genome at an average of 10 map-unit intervals on all nine linkage groups, were tested individually for associations to phenotypic measurements by single factor ANOVA, and markers with significant associations (P<0.05) were used to develop multilocus models. These data were utilized to describe the location, parental contribution of alleles, magnitude of effect, and the gene action of trait loci. Single marker loci that were significantly associated (P<0.05) with trait measurements accounted for 6.7–42.7% of the phenotypic variation. Multilocus models described as much as 60.1% of the phenotypic variation for a given trait. In some cases, different related traits had common marker-locus associations with similar gene action and genotypic class ranking. The numbers, action, and linkages, of genes controlling traits estimated with marker loci in this population corresponded to estimates based on classical genetic methods from other studies using similar, or similarly-wide, crosses. There was no evidence that genome duplication accounted for a significant portion of multiple genes controlling trait loci over the entire genome, but possible duplications of trait loci were identified for two regions with linked, duplicated marker loci.  相似文献   
23.
The accumulation of abscisic acid (ABA) by detached and partially dehydrated wheat leaves is known to be inherited in a quantitative manner. The location of genes having a major effect on drought-induced ABA accumulation in wheat was determined using a set of single chromosome substitution lines and populations derived from a cross between a high-ABA- and a low-ABA-producing genotype. Examination of a series of chromosome substitution lines of the high-ABA genotype Ciano 67 into the low-ABA recipient Chinese Spring showed that chromosome 5A carries gene(s) that have a major influence on ABA accumulation in a drought test with detached and partially dehydrated leaves (DLT). A similar DLT was used to examine ABA accumulation in a population of F2 plants and doubled haploid (DH) lines derived from the cross between Chinese Spring (low-ABA) and SQ1 (high-ABA) in which the F2 population (139 plants) and DH lines (96 lines) were also mapped partially with molecular markers. Analysis of variance of ABA accumulation between and within marker allele classes in the F2 confirmed the location of a gene(s) regulating ABA accumulation on the long arm of chromosome 5A. MAPMAKERQTL showed the most likely position for the ABA quantitative trait locus (QTL) to be between the loci Xpsr575 and Xpsr426, about 8 cM from Xpsr426. A similar trend for high ABA accumulation was found in DH lines having the SQ1 allele at marker loci in the same region of chromosome 5AL, but the QTL effect was not significant. The function of the QTL is discussed.  相似文献   
24.
Summary Prior information on gene effects at individual quantitative trait loci (QTL) and on recombination rates between marker loci and QTL is derived. The prior distribution of QTL gene effects is assumed to be exponential with major effects less likely than minor ones. The prior probability of linkage between a marker and another single locus is a function of the number and length of chromosomes, and of the map function relating recombination rate to genetic distance among loci. The prior probability of linkage between a marker locus and a quantitative trait depends additionally on the number of detectable QTL, which may be determined from total additive genetic variance and minimum detectable QTL effect. The use of this prior information should improve linkage tests and estimates of QTL effects.  相似文献   
25.
本文根据FuzzZ数学理论,运用多级模型的综合评判法,对国内20种黄桃罐头产品质量进行了优劣鉴评。并将其划分为一、二、三、四4个等级。从而为罐头产品质量鉴评,准确地汰劣遴优提供新方法。  相似文献   
26.
A study was initiated to determine the number, chromosomal location, and magnitude of effect of QTL (quantitative trait loci or locus depending on context) controlling protein and starch concentration in the maize (Zea mays L.) kernel. Restriction fragment length polymorphism (RFLP) analysis was performed on 100 F3 families derived from a cross of two strains, Illinois High Protein (IHP), X Illinois Low Protein (ILP), which had been divergently selected for protein concentration for 76 generations as part of the Illinois Long Term Selection Experiment. These families were analyzed for kernel protein and starch in replicated field trials during 1990 and 1991. A series of 90 genomic and cDNA clones distributed throughout the maize genome were chosen for their ability to detect RFLP between IHP and ILP. These clones were hybridized with DNA extracted from the 100 F3 families, revealing 100 polymorphic loci. Single factor analysis of variance revealed significant QTL associations of many loci with both protein and starch concentration (P < 0.05 level). Twenty-two loci distributed on 10 chromosome arms were significantly associated with protein concentration, 19 loci on 9 chromosome arms were significantly associated with starch concentration. Sixteen of these loci were significant for both protein and starch concentration. Clusters of 3 or more significant loci were detected on chromosome arms 3L, 5S, and 7L for protein concentration, suggesting the presence of QTL with large effects at these locations. A QTL with large additive effects on protein and starch concentration was detected on chromosome arm 3L. RFLP alleles at this QTL were found to be linked with RFLP alleles at the Shrunken-2 (Sh2) locus, a structural gene encoding the major subunit of the starch synthetic enzyme ADP-glucose pyrophosphorylase. A multiple linear regression model consisting of 6 significant RFLP loci on different chromosomes explained over 64 % of the total variation for kernel protein concentration. Similar results were detected for starch concentration. Thus, several chromosomal regions with large effects may be responsible for a significant portion of the changes in kernel protein and starch concentration in the Illinois Long Term Selection Experiment.  相似文献   
27.
Summary
An efficient approach to detect association between quantitative traits and bands of DNA fingerprint patterns uses intra-family tail analysis, which compares fingerprints of DNA mixes from individuals at the two tails of a phenotypic distribution. In analysis of 67 paternal half-sibs of a meat-type chicken family, of 57 sire bands generated by two probes, one sire-specific band (S6–6) was associated with abdominal fat deposition. The band effect was estimated by a linear model analysis to be 0–88 standard deviations, or about 30% of the family mean. The association between band S6–6 and abdominal fat was further examined by testing progeny of paternal half-sibs of the chickens which were used in the tail analysis, establishing genetic linkage between the DNA marker and a genetic locus affecting abdominal fat deposition.  相似文献   
28.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
29.
该文选取浙江省古田山亚热带常绿阔叶林72种木本植物,探究气候因素、系统发育关系和功能性状对亚热带常绿阔叶林叶衰老物候的影响。结果表明,叶变色期在9—12月,落叶期在10—12月。每月落叶物种数与月均温、月均降水量和月均日照时数没有显著相关性,每月叶变色物种数与月均温和月均日照时数呈弱相关;落叶性对叶变色期和落叶期具有显著影响;植物间系统发育关系对叶变色期和落叶期没有显著影响。因此,生物和非生物因子都会影响常绿阔叶树种的叶衰老,这对于提高秋季物候预测模型具有重要价值。  相似文献   
30.
为了解寄生植物叶片功能性状的差异及其影响因素,研究了西双版纳地区寄主植物对3种桑寄生植物叶片功能性状的影响,并分析了桑寄生植物与寄主植物叶片功能性状的相关性。结果表明,不同寄主植物的相同寄生植物叶片功能性状存在显著差异,来自7种寄主植物的五蕊寄生(Dendrophthoe pentandra)的叶片含水量(61.2%~70.1%)、氮含量(9.6~16.0 g/kg)、碳氮比(30.8~48.5)以及缩合单宁含量(3.3%~11.0%)等性状的差异较大;从4种寄主植物上获取的澜沧江寄生(Scurrula chingii var.yunnanensis)的叶片含水量(60.0%~71.7%)、碳含量(431.3~502.3 g/kg)和缩合单宁含量(3.8%~9.9%)等性状也呈现较大种间差异,而在2种寄主植物上的离瓣寄生(Helixanthera parasitica)的叶片功能性状没有显著差异。桑寄生植物与寄主植物的叶片含水量、总碳含量、总氮含量、碳氮比和缩合单宁含量呈显著的正相关。寄主植物作为桑寄生植物营养物质的主要来源,会影响桑寄生植物叶片的相应功能性状。桑寄生植物能从寄主植物获...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号