首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   28篇
  国内免费   9篇
  2023年   6篇
  2022年   4篇
  2021年   1篇
  2020年   5篇
  2019年   12篇
  2018年   29篇
  2017年   6篇
  2015年   6篇
  2014年   47篇
  2013年   23篇
  2012年   10篇
  2011年   32篇
  2010年   30篇
  2009年   46篇
  2008年   25篇
  2007年   62篇
  2006年   35篇
  2005年   55篇
  2004年   18篇
  2003年   14篇
  2002年   11篇
  2001年   11篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   3篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   11篇
  1989年   4篇
  1988年   3篇
  1987年   7篇
  1986年   6篇
  1985年   1篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1971年   3篇
排序方式: 共有620条查询结果,搜索用时 156 毫秒
71.
Photosystem II passes through four metastable S-states in catalysing light-driven water oxidation. Variable temperature variable field (VTVH) Magnetic Circular Dichroism (MCD) spectra in PSII of Thermosynochococcus (T.) vulcanus for each S-state are reported. These spectra, along with assignments, provide a new window into the electronic and magnetic structure of Mn4CaO5. VTVH MCD spectra taken in the S2 state provide a clear g = 2, S = 1/2 paramagnetic characteristic, which is entirely consistent with that known by EPR. The three features, seen as positive (+) at 749 nm, negative (?) at 773 nm and (+) at 808 nm are assigned as 4A  2E spin-flips within the d3 configuration of the Mn(IV) centres present. This assignment is supported by comparison(s) to spin-flips seen in a range of Mn(IV) materials. S3 exhibits a more intense (?) MCD peak at 764 nm and has a stronger MCD saturation characteristic. This S3 MCD saturation behaviour can be accurately modelled using parameters taken directly from analyses of EPR spectra. We see no evidence for Mn(III) d-d absorption in the near-IR of any S-state. We suggest that Mn(IV)-based absorption may be responsible for the well-known near-IR induced changes induced in S2 EPR spectra of T. vulcanus and not Mn(III)-based, as has been commonly assumed. Through an analysis of the nephelauxetic effect, the excitation energy of S-state dependent spin-flips seen may help identify coordination characteristics and changes at each Mn(IV). A prospectus as to what more detailed S-state dependent MCD studies promise to achieve is outlined.  相似文献   
72.
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.  相似文献   
73.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   
74.
Beena Nandha  Pierre Joliot  Giles N. Johnson 《BBA》2007,1767(10):1252-1259
The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reduction following oxidation in the presence of DCMU, we conclude that this mutant is able to perform cyclic electron flow at a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced in wild type leaves, i.e. high light or low CO2 concentrations resulted in enhancement of cyclic electron flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimuli in the mutant. We also show that the pgr5 mutant is affected in the redox poising of the chloroplast, with the electron transport chain being substantially reduced under most conditions. This may result in defective feedback regulation of photosynthetic electron transport under some conditions, thus providing a rationale for the reduced efficiency of cyclic electron flow.  相似文献   
75.
Chunxi Zhang 《BBA》2007,1767(6):493-499
The function and mechanism of TyrZ in active photosystem II (PSII) is one of the long-standing issues in the study of photosynthetic water oxidation. Based on recent investigations on active PSII and theoretical studies, a new model is proposed, in which D1-His190 acts as a bridge, to form a low-barrier hydrogen bond (LBHB) with TyrZ, and a coordination bond to Mn or Ca ion of the Mn-cluster. Accordingly, this new model differs from previous proposals concerning the mechanism of TyrZ function in two aspects. First, the LBHB plays a key role to decrease the activation energy for TyrZ oxidation and TyrZ· reduction during photosynthetic water oxidation. Upon the oxidation of TyrZ, the hydrogen bond between TyrZ and His190 changes from a LBHB to a weak hydrogen bond, and vice versa upon TyrZ· reduction. In both stages, the electron transfer and proton transfer are coupled. Second, the positive charge formed after TyrZ oxidation may play an important role for water oxidation. It can be delocalized on the Mn-cluster, thus helps to accelerate the proton release from substrate water on Mn-cluster. This model is well reconciled with observations of the S-state dependence of TyrZ oxidation and TyrZ· reduction, proton release, isotopic effect and recent EPR experiments. Moreover, the difference between TyrZ and TyrD in active PSII can also be readily rationalized. The His190 binding to the Mn-cluster predicted in this model is contradictious to the recent structure data, however, it has been aware that the crystal structure of the Mn-cluster and its environment are significantly modified by X-ray due to radiation damage and are different from that in active PSII. It is suggested that the His190 may be protonated during the radiation damage, which leads to the loss of its binding to Mn-cluster and the strong hydrogen bond with TyrZ. This type of change arising from radiation damage has been confirmed in other enzyme systems.  相似文献   
76.
The long-lived, light-induced radical YD of the Tyr161 residue in the D2 protein of Photosystem II (PSII) is known to magnetically interact with the CaMn4 cluster, situated ∼ 30 Å away. In this study we report a transient step-change increase in YD EPR intensity upon the application of a single laser flash to S1 state-synchronised PSII-enriched membranes from spinach. This transient effect was observed at room temperature and high applied microwave power (100 mW) in samples containing PpBQ, as well as those containing DCMU. The subsequent decay lifetimes were found to differ depending on the additive used. We propose that this flash-induced signal increase was caused by enhanced spin relaxation of YD by the OEC in the S2 state, as a consequence of the single laser flash turnover. The post-flash decay reflected S2 → S1 back-turnover, as confirmed by their correlations with independent measurements of S2 multiline EPR signal and flash-induced variable fluorescence decay kinetics under corresponding experimental conditions. This flash-induced effect opens up the possibility to study the kinetic behaviour of S-state transitions at room temperature using YD as a probe.  相似文献   
77.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 Å resolution), in which 11 β-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/QA may imply a direct charge recombination of Car+QA. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   
78.
Regional variation in clade richness can be vast, reflecting differences in the dynamics of historical dispersal and diversification among lineages. Although it has been proposed that dispersal into new biogeographic regions may facilitate diversification, to date there has been limited assessment of the importance of this process in the generation, and maintenance, of broad‐scale biodiversity gradients. To address this issue, we analytically derive biogeographic regions for a global radiation of passerine birds (the Corvides, c. 790 species) that are highly variable in the geographic and taxonomic distribution of species. Subsequently, we determine rates of historical dispersal between regions, the dynamics of diversification following regional colonization, and spatial variation in the distribution of species that differ in their rates of lineage diversification. The results of these analyses reveal spatiotemporal differences in the build‐up of lineages across regions. The number of regions occupied and the rate of transition between regions both predict family richness well, indicating that the accumulation of high clade richness is associated with repeated expansion into new geographic areas. However, only the largest family (the Corvidae) had significantly heightened rates of both speciation and regional transition, implying that repeated regional colonization is not a general mechanism promoting lineage diversification among the Corvides.  相似文献   
79.
Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv/Fm) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv/Fm in a dose‐dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 μmoles NH4+ · L?1, followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH4+ · L?1, followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH4+ · L?1. At non‐inhibiting concentrations of NH4+, the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3?), whereas the other grew significantly faster on NH4+. All four diatoms tested grew faster on NH4+ compared with NO3?. We showed that in cases where growth rates were faster on NH4+ than they were on NO3?, the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3? is dominant, as long as N concentrations are sufficient.  相似文献   
80.
The Chlamydomonas reinhardtii truncated light-harvesting antenna 4 (tla4) DNA transposon mutant has a pale green phenotype, a lower chlorophyll (Chl) per cell and a higher Chl a/b ratio in comparison with the wild type. It required a higher light intensity for the saturation of photosynthesis and displayed a greater per chlorophyll light-saturated rate of oxygen evolution than the wild type. The Chl antenna size of the photosystems in the tla4 mutant was only about 65% of that measured in the wild type. Molecular genetic analysis revealed that a single plasmid DNA insertion disrupted two genes on chromosome 11 of the mutant. A complementation study identified the “chloroplast signal recognition particle 54” gene (CpSRP54), as the lesion causing the tla4 phenotype. Disruption of this gene resulted in partial failure to assemble and, therefore, lower levels of light-harvesting Chl-binding proteins in the C. reinhardtii thylakoids. A comparative in silico 3-D structure-modeling analysis revealed that the M-domain of the CpSRP54 of C. reinhardtii possesses a more extended finger loop structure, due to different amino acid composition, as compared to that of the Arabidopsis CpSRP54. The work demonstrated that CpSRP54 deletion in microalgae can serve to generate tla mutants with a markedly smaller photosystem Chl antenna size, improved solar energy conversion efficiency, and photosynthetic productivity in high-density cultures under bright sunlight conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号