首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4525篇
  免费   364篇
  国内免费   96篇
  2024年   4篇
  2023年   82篇
  2022年   110篇
  2021年   86篇
  2020年   109篇
  2019年   157篇
  2018年   196篇
  2017年   159篇
  2016年   162篇
  2015年   199篇
  2014年   398篇
  2013年   438篇
  2012年   313篇
  2011年   444篇
  2010年   420篇
  2009年   299篇
  2008年   224篇
  2007年   214篇
  2006年   229篇
  2005年   213篇
  2004年   111篇
  2003年   81篇
  2002年   52篇
  2001年   36篇
  2000年   24篇
  1999年   32篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   9篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   33篇
  1984年   23篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   10篇
  1973年   7篇
排序方式: 共有4985条查询结果,搜索用时 593 毫秒
221.
Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem‐like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24‐ cell populations) and the mature luminal cells (CD49f‐EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label‐free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24‐, ALDH+ versus CD49f‐EpCAM+ and CD44+CD24‐ versus CD49f‐EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti‐CSC therapeutics.  相似文献   
222.
目的:BAG结构域(BAG domain,BD)为BAG家族蛋白的基本功能结构域,通过对BAG家族蛋白6个成员的9个BDs的相互作用蛋白进行分析,以探明不同BD相互作用蛋白的异同点并为研究BAG家族蛋白多样性生物功能的分子机制提供理论依据。方法:构建p-GEX-4T2-BDs重组子并转化E.coli BL21(DE3)经IPTG诱导表达GST-BDs融合蛋白并纯化。采用GST pulldown技术联合高效液相色谱串联质谱(LC-MS/MS)的策略对BDs相互作用蛋白进行定性定量分析。最后,用DAVID(The Database for Annotation,Visualization and Intergrated Discovery)和cytoscape对BDs相互作用蛋白进行GO(Gene Ontology)功能分析及KEGG(Kyoto Enyoolpedia of Genes and Genomes)通路分析。结果:在Hela细胞的胞浆蛋白中总共鉴定到370个潜在的BDs相互作用蛋白,主要为核糖体蛋白(ribosomal proteins)、翻译起始因子(Eukaryotic translation initiation factors)、翻译延长因子(Eukaryotic translation elongation factors)、泛素化-蛋白酶体相关蛋白(ubiquitin-proteasome associated proteins)及HSP40家族蛋白。GO功能富集分析结果显示,BDs相互作用蛋白涉及多种生物学功能,包括细胞内蛋白质质量控制(protein quality control)、糖代谢(glycolysis)、免疫调控(immune response)、应激反应(stress response)、细胞周期(cell cycle)等。KEGG通路分析结果表明BDs相互作用蛋白参与多条细胞内重要的信号通路,包括FGF信号通路(FGF signaling pathway)、EGF受体信号通路(EGF receptor signaling pathway)、PDGF信号通路(PDGF signaling pathway)、Ras通路(Ras pathway)等。结论:BAG家族蛋白不同成员的BD所介导的蛋白-蛋白相互作用既有共性又有特异性,BAG家族蛋白通过BDs介导多种蛋白相互作用并参与细胞内多条重要的信号通路来调控细胞内蛋白质稳态、糖代谢、免疫反应、应激反应、细胞周期等过程。  相似文献   
223.
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis‐SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood‐based biomarker studies.  相似文献   
224.
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two‐dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P‐value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC‐MS/MS. Alpha‐amylase, CREB‐binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down‐regulated in ASD. Increased expression of proto‐oncogene Frequently rearranged in advanced T‐cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin‐inducible protein precursor, Mucin‐16, Ca binding protein migration inhibitory factor‐related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.  相似文献   
225.
Biomarkers are widely used in clinical diagnosis, prognosis and therapy monitoring. Here, we developed a protocol for the efficient and selective enrichment of small and low concentrated biomarkers from human serum, involving a 95% effective depletion of high‐abundant serum proteins by partial denaturation and enrichment of low‐abundant biomarkers by size exclusion chromatography. The recovery of low‐abundance biomarkers was above 97%. Using this protocol, we quantified the tumour markers DcR3 and growth/differentiation factor (GDF)15 from 100 μl human serum by isotope dilution mass spectrometry, using 15N metabolically labelled and concatamerized fingerprint peptides for the both proteins. Analysis of three different fingerprint peptides for each protein by liquid chromatography electrospray ionization mass spectrometry resulted in comparable concentrations in three healthy human serum samples (DcR3: 27.23 ± 2.49 fmol/ml; GDF15: 98.11 ± 0.49 fmol/ml). In contrast, serum levels were significantly elevated in tumour patients for DcR3 (116.94 ± 57.37 fmol/ml) and GDF15 (164.44 ± 79.31 fmol/ml). Obtained data were in good agreement with ELISA and qPCR measurements, as well as with literature data. In summary, our protocol allows the reliable quantification of biomarkers, shows a higher resolution at low biomarker concentrations than antibody‐based strategies, and offers the possibility of multiplexing. Our proof‐of‐principle studies in patient sera encourage the future analysis of the prognostic value of DcR3 and GDF15 for colon cancer patients in larger patient cohorts.  相似文献   
226.
Death of oligodendrocytes accompanied by destruction of neurons and axons are typical histopathological findings in cortical and subcortical grey matter lesions in inflammatory demyelinating disorders like multiple sclerosis (MS). In these disorders, mainly CD8+ T-cells of putative specificity for myelin- and oligodendrocyte-related antigens are found, so that neuronal apoptosis in grey matter lesions may be a collateral effect of these cells. Different types of animal models are established to study the underlying mechanisms of the mentioned pathophysiological processes. However, although they mimic some aspects of MS, it is impossible to dissect the exact mechanism and time course of ‘‘collateral’’ neuronal cell death. To address this course, here we show a protocol to study the mechanisms and time response of neuronal damage following an oligodendrocyte-directed CD8+ T cell attack. To target only the myelin sheath and the oligodendrocytes, in vitro activated oligodendrocyte-specific CD8+ T-cells are transferred into acutely isolated brain slices. After a defined incubation period, myelin and neuronal damage can be analysed in different regions of interest. Potential applications and limitations of this model will be discussed.  相似文献   
227.
The contamination crisis of 2008 has brought to light several risks associated with use of animal tissue derived heparin. Because the total chemical synthesis of heparin is not feasible, a bioengineered approach has been proposed, relying on recombinant enzymes derived from the heparin/HS biosynthetic pathway and Escherichia coli K5 capsular polysaccharide. Intensive process engineering efforts are required to achieve a cost‐competitive process for bioengineered heparin compared to commercially available porcine heparins. Towards this goal, we have used 96‐well plate based screening for development of a chitosan‐based purification process for heparin and precursor polysaccharides. The unique pH responsive behavior of chitosan enables simplified capture of target heparin or related polysaccharides, under low pH and complex solution conditions, followed by elution under mildly basic conditions. The use of mild, basic recovery conditions are compatible with the chemical N‐deacetylation/N‐sulfonation step used in the bioengineered heparin process. Selective precipitation of glycosaminoglycans (GAGs) leads to significant removal of process related impurities such as proteins, DNA and endotoxins. Use of highly sensitive liquid chromatography‐mass spectrometry and nuclear magnetic resonance analytical techniques reveal a minimum impact of chitosan‐based purification on heparin product composition. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1348–1359, 2015  相似文献   
228.
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO‐DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO‐DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA‐based CHO‐DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self‐organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up‐regulating NCK1 and down‐regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial‐ and endoplasmic reticulum‐mediated cell death pathways by up‐regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1026–1038, 2015  相似文献   
229.
Microtubules (MTs) are highly dynamic polymers composed of α- and β-tubulin heterodimers. Dysregulation of MT dynamics in neurons may be a contributing factor in the progression of various neurodegenerative diseases. We developed a stable isotope labeling by amino acids in cell culture (SILAC)-based liquid chromatography–mass spectrometry (LC–MS) method to measure the fraction of [13C6]leucine-labeled α-tubulin-derived surrogate peptides. Using this approach, we measured the time course of incorporation of [13C6]leucine label into the MT and dimer pools isolated from cycling cells and rat primary hippocampal neurons. We found that the MT pool is in rapid equilibrium with the dimer pool in the cycling cells, consistent with rapid MT polymerization/depolymerization during cell proliferation. Conversely, in neurons, we found that labeling of the MT pool was rapid, whereas the dimer pool was delayed. These results suggest that newly synthesized α-tubulin is first incorporated into MTs or complexes that co-sediment with MTs and that appearance of labeled α-tubulin in the dimer pool may be a consequence of MT depolymerization or breakdown. Our results demonstrate that a SILAC-based approach can be used to measure MT dynamics and may have utility for exploring MT dysregulation in various models of neurodegenerative disease.  相似文献   
230.
Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC–MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号