首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   8篇
  国内免费   32篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   4篇
  2013年   14篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   10篇
  2007年   17篇
  2006年   15篇
  2005年   13篇
  2004年   7篇
  2003年   14篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1981年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
201.
202.
The effect of seed and seedling mortality on plant population dynamics depends on the degree to which the growth and reproduction of surviving individuals can compensate for the deaths that occur. To explore this issue, we sowed seeds of the annual Kummerowia stipulacea at three densities in sunken pots in the field, which contained either field soil, microwaved field soil, or microwaved field soil augmented with oospores of three Pythium species. High sowing density reduced seedling establishment and seedling size, but these effects were independent of the soil treatment. In the oospore-augmented soil, seed and seedling survival was low. The surviving plants were initially smaller but, at maturity, average plant size was greatest in the oospore-augmented soil, compared to the other treatments. Total population seed production was unaffected by soil treatment, suggesting that the effect of disease was limited to the seedling stage, with surviving plants released from intraspecific competition. To test the hypothesis that the surviving plants in the oospore-augmented soil were more disease-resistant, seeds from each of the sowing density-soil type treatments were sown in a growth chamber inoculation study. No evidence for selection for resistance was found. A second inoculation experiment revealed that oospore inoculum reduced plant numbers and mass regardless of whether field or microwaved soil was used, suggesting that results from the field experiment were not dependent on the use of microwaved soil. The findings of this study indicate that the ecological effects of disease on individual plants and on plant populations are not necessarily equivalent. Received: 13 January 1999 / Accepted: 21 September 1999  相似文献   
203.
Biofumigation by Brassicaceae green manure or seed meal incorporation into soil is an ecological alternative to chemical fumigation against soil-borne pathogens, based on the release of glucosinolate-derived compounds. This study aimed at investigating the tolerance of the beneficial fungus Trichoderma to these compounds in view to combined utilization with Brassica carinata seed meal (BCSM). Forty isolates of Trichoderma spp. were tested in vitro for tolerance to toxic volatiles released by BCSM and in direct contact with the meal. They were found to be generally less sensitive than the assayed pathogens (Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum), even if a fungistatic effect was observed at the highest dose (10 μmole of sinigrin). Most of them also were able to grow on BCSM and over the pathogens tested. A preliminary experiment of integrating BCSM with Trichoderma in soil was carried out under controlled conditions with the patho-system P. ultimum—sugar beet. BCSM incorporation increased pathogen population, but reduced disease incidence, probably due to indirect mechanisms. The greatest effect was achieved when BCSM was applied in combination with Trichoderma, regardless of meal ability to release isothiocyanate. These findings suggest that disease control can be improved by this integrated approach. This study also highlighted that a reduction of allyl-isothiocyanate concentration in soil could occur due to the activity of some Trichoderma isolates. This effect could protect resident or introduced Trichoderma isolates from depressing effects due to the biocidal compounds, but, on the other hand, could reduce the efficacy of biofumigation against target pathogens.  相似文献   
204.
During the course of an investigation on the Pythiaceous oomycetes occurring in the Burgundian vineyards, some species of Pythium possessing mainly hypogynous antheridia were found. These had been classified as oomycetes belonging to the "Pythium rostratum" group for a long time. Three of these isolates, having similar structures and growth, are very closely related to a recently described species, Pythium bifurcatum Paul. A close look at these, however, underlines some fundamental differences with the latter. Not all of them produce zoospores but have very large sporangia. The type specimen is F-1200 (B 76a) which is a medium-slow growing saprophyte. The sequence of the ITS region of the rDNA also shows a very close relationship with P. bifurcatum. On the basis of morphological and molecular analysis, we now describe this species as Pythium longisporangium sp. nov. Morphological features of this new species, the sequences of the ITS region of its nuclear ribosomal DNA, and its comparison with related species are discussed.  相似文献   
205.
The putative plant defensin SPI1 cDNA from the conifer Norway spruce (Picea abies) is the only known plant defensin-like sequence from a gymnosperm. The predicted translational product SPI1 was not detected in the embryo or other parts of the seed by means of antibodies, but it accumulated in the root cortex after germination. In roots of seedlings infected with the root pathogenic oomycete Pythium dimorphum and the blue stain fungus Ceratocystis polonica, variable levels of SPI1 was detected during the first day as a response to the infection, however a significant increase was seen as an initial response to the root-rot fungus Heterobasidion annosum. After the first day of infection, the amount of SPI1 polypeptide was dramatically reduced in response to either of the pathogens, but not in response to the ectomycorrhizal fungus Laccaria bicolor. During the same time of infection, extensive damage to cortical root cells resulted from the infecting pathogens, but not from the mycorrhiza. These results indicate that pathogens may reduce the level of SPI1 by suppressing its expression, but may also reduce the SPI1 level by invading and disrupting the root cortical cells or by a combination of these mechanisms.  相似文献   
206.
Pythium carbonicum (F-72) sp. nov. was found in soil samples taken on the top of a spoil heap in northern France. The morphology of this new species resembles that of a recently described species: Pythium megacarpum. However, the antheridial and oogonial characteristics of this new species are unique, and the comparison of its ITS region of the nuclear ribosomal DNA indicates that this species is also related to the genus Phytophthora. The fungus does not sporulate, the sporangia germinate directly into mycelium through germ tubes. The oogonia of P. carbonicum are smooth-walled and also papillated, and are provided with monoclinous and diclinous antheridia that wrap around, forming a complicated knot. Morphological features of this new species, together with the sequences of the ITS region of its nuclear ribosomal DNA and its comparison with related species are discussed here.  相似文献   
207.
AIMS: To develop a specific method for distinguishing and detecting Pythium species. METHODS AND RESULTS: Twenty PCR primers were designed from the sequences of the rDNA internal transcribed spacer 1 (ITS1) region from 34 Pythium species. The specificity of these forward primers paired with ITS2 or ITS4 and reverse universal primers was tested. Five species-specific primers were obtained, other primers showed different specificity to Pythium species. The specific amplifications enabled nine Pythium species to be differentiated. Specific detection of Pythium aphanidermatum from infested plants and P. dimorphum from soil was demonstrated. CONCLUSIONS: A method for identifying nine Pythium species using specific PCR amplification was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its rapidness and ease, the results of PCR amplified with different primers can be a powerful method for identifying Pythium species and detecting or monitoring the target fungus directly from plant material, soil and water samples.  相似文献   
208.
Forces exerted by hyphae of the phytopathogen Pythium graminicola and mammalian pathogen Pythium insidiosum were compared with the mechanical resistance of their hosts' tissues. Hyphal apices of both species exerted a mean force of 2 microN, corresponding to mean pressures of 0.19 microN microm(-2) (or MPa) for P. graminicola, and 0.14 microN microm(-2) for P. insidiosum. Experiments with glass microprobes showed that the epidermis of grass roots resisted penetration until the pressure applied at the probe tip reached 1-12 microN microm(-2). Previously published data show that mammalian skin offers even greater resistance (10-47 microN microm(-2)). Clearly, tissue strength exceeds the pressures exerted by hyphae of these pathogens, verifying that secreted enzymes must play a critical role in reducing the resistance of plant and animal tissues. It is presumed that hyphae are sufficiently powerful to bore through any obstacles remaining after enzyme action.  相似文献   
209.
Conventional methods indicated that Pythium violae was most commonly isolated from carrot cavity spot samples from 14 UK sites. For one site the most frequently isolated species was Pythium sulcatum. Results of similar isolation work were compared with the assay of cavity spot lesions using polyclonal antibodies, raised to P. violae or P. sulcatum, in competition ELISA. Where lesions were artificially induced the test confirmed which pathogen was causal. With cavities developed on the field-grown carrots P. violae again predominated and the ELISA confirmed this. In one sample P. sulcatum was also isolated from a small number of lesions and was not detected in ELISA. The competition ELISA did not indicate presence of either Pythium in a range of non-cavity spot lesions from which attempts at isolation were negative.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号