首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10497篇
  免费   497篇
  国内免费   955篇
  11949篇
  2024年   33篇
  2023年   200篇
  2022年   265篇
  2021年   332篇
  2020年   338篇
  2019年   293篇
  2018年   295篇
  2017年   226篇
  2016年   305篇
  2015年   436篇
  2014年   485篇
  2013年   577篇
  2012年   318篇
  2011年   375篇
  2010年   352篇
  2009年   467篇
  2008年   460篇
  2007年   451篇
  2006年   478篇
  2005年   457篇
  2004年   427篇
  2003年   343篇
  2002年   393篇
  2001年   256篇
  2000年   244篇
  1999年   236篇
  1998年   226篇
  1997年   228篇
  1996年   211篇
  1995年   216篇
  1994年   237篇
  1993年   196篇
  1992年   186篇
  1991年   154篇
  1990年   143篇
  1989年   126篇
  1988年   127篇
  1987年   93篇
  1986年   100篇
  1985年   95篇
  1984年   128篇
  1983年   75篇
  1982年   83篇
  1981年   57篇
  1980年   66篇
  1979年   55篇
  1978年   30篇
  1977年   21篇
  1976年   23篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
83.
Abstract: A subclone of NG108–15 neuroblastoma-glioma hybrid cells was used to study the intracellular distribution of opioid receptors. Subcellular organelles were separated on self-generating Percoll-sucrose gradients and the enzymes β-glucuronidase, galactosyltransferase, 5′-nucleotidase, and glucose-6-phosphatase were used as markers to localize the various structures. Analysis of the receptor distribution from untreated cells shows that the plasma membranes contained the highest receptor density, but a significant portion of the opioid binding sites was unevenly distributed between the lysosomes, microsomes, and Golgi elements. The enzyme markers indicated that appearance of opioid receptors in these intracellular structures does not result merely from contamination with plasma membranes. About 11% of the receptors appeared in a fraction lighter than plasma membranes. The antilysosomal agent chloroquine altered the intracellular compartmentation of the receptors, possibly by blocking their translocation in the cells. Leu-enkephalin induced time-dependent loss of receptors from all four intracellular compartments examined, but a kinetic analysis showed that the rate of receptor loss in these fractions was not identical. Thus, the percent of receptors appearing in the lysosomal fraction that could still bind [3H]-D-Ala2D-Leu5-enkephalin in vitro was increased on treatment with Leu-enkephalin. As an additional approach to follow the intracellular fate of the receptors, cells were labeled with [3H]diprenorphine, chased with various unlabeled opiates, and the distribution of 3H-ligand-receptors in the cells was monitored. Leu-enkephalin and etorphine altered the distribution of receptor-bound [3H]diprenorphine between the plasma membranes, lysosomes, and Golgi elements, whereas morphine had no such effect. The study sheds light on the role of intracellular structures in the metabolism of opioid receptors in untreated and opioid-treated cells.  相似文献   
84.
85.
Summary The enzyme protochlorophyllide (pchlide) reductase has been identified amongst the peptides, resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), of chloroplast membranes from oat and barley plants. In support of this identification the enzymic activity associated with the enzyme has also been measured in the same preparations. A higher level of enzyme was found in plants which had been darkened prior to extraction. Based on this data, mechanisms for the light regulated diurnal variation of the reductase are discussed.  相似文献   
86.
Summary Intestinal and gall-bladder epithelial cells in sticklebacks have been examined in ultrathin sections and freeze-etch replicas. Enterocytes throughout the intestine appear to have a well-developed basal labyrinth similar to that of renal tubular cells, consisting of baso-lateral infoldings closely associated with numerous mitochondria. The lumen inside these intracellular membranes is continuous with the intercellular space via pores. Such a membrane system is also present in the epithelial cells lining the gall bladder, distinguishing them from gall-bladder cells of higher vertebrates. Morphometric analysis indicates that the basal labyrinth of enterocytes in the posterior part of the intestine increases markedly in both sexually mature males and androgen-treated females. This does not occur in the anterior part or gall bladder. In sticklebacks, androgens cause reduced urine excretion and enhanced fluid release via the anus. We conclude that the cells lining the intestine and gall bladder possess an extensive basal labyrinth that may function as a backward channel system, enabling fluid to be produced in the intestine of fish. The androgen-induced increase in the extent of the basal labyrinth in the posterior part of the intestine may be related to the enhanced rate of intestinal fluid excretion observed in sexually mature male sticklebacks.  相似文献   
87.
l-Amino acid oxidase is synthesized in Neurospora crassa in response to three different physiological stimuli: (i) starvation in phosphate buffer, (ii) mating, and (iii) nitrogen derepression in the presence of amino acids. During starvation in phosphate buffer, or after mating, l-amino acid oxidase synthesis occurred in parallel with that of tyrosinase. Exogenous sulfate repressed the formation of the two enzymes in starved cultures, but not in mated cultures. Sulfate repression was relieved by protein synthesis inhibitors, suggesting that the effect of sulfate required the synthesis of a metabolically unstable protein repressor. With amino acids as the sole nitrogen source only l-amino acid oxidase was produced. Under these conditions enzyme synthesis was repressed by ammonium and was insensitive to sulfate. Biochemical evidence suggested that the l-amino acid oxidase formed under the three different conditions was the same protein. Therefore, the expression of l-amino acid oxidase appeared to be under the control of least two regulatory circuits. One, also controlling tyrosinase, seems to respond to developmental signals related to sexual morphogenesis. The other, controlling other enzymes of the nitrogen catabolic system, is used by the organism to obtain nitrogen from alternative sources such as proteins and amino acids.  相似文献   
88.
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by a denylylation and deadenylylation. The pH profiles assayed by the -glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these eurves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown, in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.Abbreviations GS glutamine synthetase - SMM succinate minimal medium - ASMM ammonium/succinate minimal medium - GT -glutamyl transferase - SVP snake venom phosphodiesterase  相似文献   
89.
Ethanol grown Acetobacter aceti differed from acetate grown. In ethanol grown cells, acetate uptake, caused by the oxidation of acetate, was completely inhibited by ethanol, in acetate grown cells only to 20%. This was correlated with a 65-fold higher specific activity of the membrane bound NAD(P)-independent alcohol dehydrogenase in ethanol grown than in acetate grown cells. In comparison with ethanol grown cells, acetate grown cells showed a 3-fold higher acetate respiration rate and 3-fold higher specific activities of some tricarboxylic acid cycle enzymes tested. Both adaptations were due to induction by the homologous and not to repression by the heterologous growth substrate. A. aceti showed a membrane bound NAD(P)-independent malate dehydrogenase and no activity of a soluble NAD(P)-dependent one, as was known before from A. xylinum. A hypothesis was proposed explaining the observed inhibition of malate dehydrogenase and of functioning of the tricarboxylic acid cycle in the presence of ethanol or butanol or glucose by a competition of two electron currents for a common link in the convergent electron transport chains. The electrons coming from the quinoproteins, alcohol dehydrogenase and glucose dehydrogenase on the one side and those coming from the flavoproteins, malate dehydrogenase and succinate dehydrogenase via ubiquinonecytochrome c reductase on the other side are meeting at cytochrome c. Here the quinoproteins may be favoured by higher affinity and so inhibit the flavoproteins. Inhibition could be alleviated in the cell free system by increasing the oxygen supply.Dedicated to Professor Carl Martius on the occasion of his 80th birthday, March 1st 1986  相似文献   
90.
Abstract We tested the hypothesis that electrogenic ion pumps, working at the parenchyma symplast/xylem interface of pea hypocotyls, provide the driving force for K+ uptake from the xylem. Solutions of known composition were perfused through a hypocotyl segment. The K+ activity of the solution flowing out of the xylem (K+out) increased (i.e. K+ uptake decreased) when aerobic respiration was inhibited by lack of O2, and this was preceded by a decrease in Vpx (electrical potential difference between parenchyma symplast and xylem). Perfusion with auxin (1AA) and fusicoccin (FC) stimulated the electrogenic activity of the ‘xylem pumps’ (111 and 205% respectively) and stimulated uptake of K + from the xylem (with 71% and 29% respectively). The close correlation between xylem pump activity and K+ uptake corroborated the aforementioned hypothesis. Interestingly, inhibition of pump activity by anoxia was incomplete in the presence of FC. It is thought that FC increases the affinity of the ATP-requiring xylem pump for ATP, thus ensuring that ATP production during fermentation is sufficient to fuel the pump in the absence of O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号