首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15617篇
  免费   551篇
  国内免费   396篇
  16564篇
  2024年   12篇
  2023年   114篇
  2022年   252篇
  2021年   254篇
  2020年   284篇
  2019年   475篇
  2018年   484篇
  2017年   218篇
  2016年   309篇
  2015年   435篇
  2014年   866篇
  2013年   1013篇
  2012年   542篇
  2011年   979篇
  2010年   667篇
  2009年   787篇
  2008年   815篇
  2007年   889篇
  2006年   826篇
  2005年   752篇
  2004年   635篇
  2003年   589篇
  2002年   494篇
  2001年   355篇
  2000年   320篇
  1999年   337篇
  1998年   367篇
  1997年   282篇
  1996年   255篇
  1995年   260篇
  1994年   221篇
  1993年   166篇
  1992年   154篇
  1991年   127篇
  1990年   113篇
  1989年   101篇
  1988年   88篇
  1987年   82篇
  1986年   46篇
  1985年   90篇
  1984年   128篇
  1983年   90篇
  1982年   78篇
  1981年   49篇
  1980年   46篇
  1979年   35篇
  1978年   19篇
  1977年   14篇
  1976年   13篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
192.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non ‐replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible toTK2 deficiency. The precise patho‐physiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   
193.
1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] phosphorylates the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, within 30 sec in primary cultured chick skeletal muscle cells. MAPK of HeLa cell lines, which had been stably transfected with a cDNA library derived from mRNA of chick skeletal muscle cells, was also rapidly phosphorylated by 1,25-(OH)2D3. These cell lines have the potential to be a good tool for further investigation of rapid non-genomic mechanism activated by 1,25-(OH)2D3.  相似文献   
194.
195.
Vascular malformations (VMs) are common congenital and neonatal dysmorphogenesis. VMs mostly occur sporadically with a few exceptions of inheritability. Tie2/angiopoietins-2 (Ang-2) and VEGF/KDR pathways are known to be involved in normal and pathogenic angiogenesis. Our study was aimed to test the contribution of these pathway gene variants to VMs. A total of 8 variants were found among 103 VM patients and 142 healthy controls. These variants comprised rs638203, rs639225, rs80338908 and rs80338909 in Tie2 gene, rs1870377 and rs2305949 in KDR gene, rs79337921 and rs34590960 in ANTXR1 gene. Our results indicated that rs638203 (p = 0.029) and rs639225 (p = 0.018) in Tie2 gene were associated with VM. A further bioinformatics analysis suggested the rs638203-G and rs639225-G might cause an abnormal splicing of Tie2 gene into to a defective protein. Our results identified two novel Tie2 gene polymorphisms with genetic susceptibility to VMs, although future functional validation of the two polymorphisms is warranted in the future.  相似文献   
196.
Nm23 is a family of genes encoding the nucleoside diphosphate (NDP) kinase, which functions in a wide variety of biological processes, including growth, development, differentiation and tumor metastasis. In this study, a novel nm23 gene, designated as Mrnm23, was identified from the freshwater giant prawn Macrobrachium rosenbergii. The full-length cDNA was 776 bp in length, encoding for a protein of 176 amino acids with one typical NDP kinase domain that harbored all the crucial residues for nucleotide binding and enzymatic activity. Like human novel nm23-H1B, the putative protein contained a unique 21-amino-acid NH2-terminal extension as compared to human nm23 (nm23-H1) homologs. Further, 3 extra amino acid residues prolonged the COOH-terminus. The Mrnm23 was ubiquitously expressed in all tissues examined, including androgenic gland, gill, heart, liver, muscle, ovary, and testis. In situ hybridization to gonad sections indicated that the Mrnm23 mRNA was localized in the cytoplasm of cup-base of differentiating spermatids, in the spike of the umbrella-shaped spermatozoa and in the cytoplasm of the early previtellogenic oocytes, suggesting that the Mrnm23 has potential roles in spermiogenesis and early differentiation of oocyte.  相似文献   
197.
原肌球蛋白相关激酶B(tropomyosin-related kinase B,TrkB)是一种神经营养性酪氨酸受体激酶,通过介导丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)、磷脂酶C-γ(phospholipase C-γ,PLC-γ)、磷脂酰肌醇3-激酶(pho...  相似文献   
198.
199.
Nilay Nandi 《Autophagy》2018,14(7):1271-1272
In neurons, autophagy counteracts consequences of aging. It is therefore of interest how basal rates of macroautophagy/autophagy can be controlled independently of metabolic stress. We recently investigated the regulation of basal, starvation-independent autophagy by Acn/Acinus, a multifunctional nuclear protein with proposed roles in apoptosis, alternative RNA splicing, and basal autophagy. We found that Acn is stabilized by phosphorylation of the conserved serine 437. The phosphomimetic AcnS437D mutation causes no overt developmental phenotypes, but significantly elevates levels of basal autophagy and extends life spans. An RNAi screen identified Cdk5 as a kinase targeting S437, a role confirmed by gain- and loss-of-function mutants of Cdk5 or its obligatory cofactor Cdk5r1/p35. Flies lacking Cdk5 function display reduced basal autophagy and a shortened life span. Both of these phenotypes are suppressed by the phosphomimetic AcnS437D mutation, indicating that phosphorylating serine 437 of Acn, and thereby maintaining basal levels of autophagy, is critical for Cdk5's function in maintaining neuronal health.  相似文献   
200.
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号