首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   23篇
  国内免费   24篇
  2023年   5篇
  2022年   12篇
  2021年   10篇
  2020年   10篇
  2019年   29篇
  2018年   30篇
  2017年   10篇
  2016年   18篇
  2015年   25篇
  2014年   54篇
  2013年   94篇
  2012年   24篇
  2011年   42篇
  2010年   34篇
  2009年   51篇
  2008年   59篇
  2007年   68篇
  2006年   51篇
  2005年   50篇
  2004年   37篇
  2003年   40篇
  2002年   47篇
  2001年   14篇
  2000年   19篇
  1999年   20篇
  1998年   22篇
  1997年   22篇
  1996年   16篇
  1995年   20篇
  1994年   22篇
  1993年   18篇
  1992年   20篇
  1991年   16篇
  1990年   17篇
  1989年   18篇
  1988年   20篇
  1987年   12篇
  1986年   26篇
  1985年   38篇
  1984年   33篇
  1983年   24篇
  1982年   28篇
  1981年   14篇
  1980年   14篇
  1979年   11篇
  1978年   9篇
  1977年   10篇
  1976年   5篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1299条查询结果,搜索用时 125 毫秒
1.
A series of metal carboxylates containing pyridine N-oxide are prepared via one pot synthesis and solid phase synthesis. The structural variations from metal to metal are observed. In the case of reactions of manganese(II) acetate with pyridine N-oxide in the presence of aromatic carboxylic acids, polymeric complexes with bridging aromatic carboxylate as well as bridging pyridine N-oxide are observed. Whereas, the reaction of copper(II) acetate with pyridine N-oxide in the presence of an aromatic carboxylic acid led to mononuclear or binuclear paddle wheel carboxylate complexes with monodentate pyridine N-oxide. Co-crystal of two neutral complexes having composition [Cu2(OBz)4(MeOH)2][Cu2(OBz)4(pyO)2] (where OBz = benzoate, pyO = pyridine N-oxide) each neutral parts have paddle wheel structure. Solid phase reaction of zinc chloride with sodium benzoate prepared in situ and pyridine N-oxide leads to a tetra-nuclear zinc complex.  相似文献   
2.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   
3.
This review discusses all pyridine alkaloids with CNS activity, their therapeutic potential, and the interesting array of sources whence they originate.  相似文献   
4.
The effect of a low phosphate concentration on intracellular adenine nucleotide content, oxygen consumption and poly--hydroxybutyrate deposition was investigated with N-free and NH 4 + batch cultures of Azotobacter vinelandii. When the microorganisms were cultured under low-phosphate concentrations the cells contained much larger amounts of poly--hydroxybutyrate, but displayed lower oxygen consumption activities and energy charge values than did control cells. Also, the ratio ATP to ADP was much higher in control cells and the intracellular levels of ATP were lower in low-phosphate cells.  相似文献   
5.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   
6.
The role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) in modulating the agonist binding to bovine striatal dopamine D2 receptor was investigated using a selective high-affinity agonist, n-propylnorapomorphine (NPA). PLG caused an enhancement in [3H]NPA binding in striatal membranes in a dose-dependent manner, the maximum effect being observed at 10(-7)-10(-6) M concentration of the tripeptide. The Scatchard analysis of [3H]NPA binding to membranes preincubated with 10(-6) M PLG revealed a significant increase in the affinity of the agonist binding sites. In contrast, there was no effect of PLG on the binding pattern of the antagonist [3H]spiroperidol. The antagonist versus agonist competition curves analyzed for agonist high- and low-affinity states of the receptor displayed an increase in the population and affinity of the high-affinity form of the receptor with PLG treatment. The low-affinity sites concomitantly decreased with relatively small change in the affinity for the agonists. Almost similar results were obtained when either NPA or apomorphine was used in the competition experiments. A partial antagonistic effect of PLG on 5'-guanylylimidodiphosphate [Gpp(NH)p]-induced inhibition of high-affinity agonist binding was also observed, as the ratio of high- to low-affinity forms of the receptor was significantly higher in the PLG-treated membranes compared to the controls. Direct [3H]NPA binding experiments demonstrated that PLG attenuated the Gpp(NH)p-induced inhibition of agonist binding by increasing the EC50 of the nucleotide (concentration that inhibits 50% of the specific binding). No effect of PLG on high-affinity [3H]NPA binding, however, could be observed when the striatal membranes were preincubated with Gpp(NH)p.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Redox interconversion of glutathione reductase was studiedin situ withS. cerevisiae. The enzyme was more sensitive to redox inactivation in 24 hour-starved cells than in freshly-grown ones. While 5 μM NADPH or 100 μM NADH caused 50% inactivation in normal cells in 30 min, 0.75 μM NADPH or 50 μM NADH promoted a similar effect in starved cells. GSSG reactivated the enzyme previously inactivated by NADPH, ascertaining that the enzyme was subjected to redox interconversion. Low EDTA concentrations fully protected the enzyme from NADPH inactivation, thus confirming the participation of metals in such a process. Extensive inactivation was obtained in permeabilized cells incubated with glucose-6-phosphate or 6-phosphogluconate, in agreement with the very high specific activities of the corresponding dehydrogenases. Some inactivation was also observed with malate, L-lactate, gluconate or isocitrate in the presence of low NADP+ concentrations. The inactivation of yeast glutathione reductase has also been studiedin vivo. The activity decreased to 75% after 2 hours of growth with glucono-δ-lactone as carbon source, while NADPH rose to 144% and NADP+ fell to 86% of their initial values. Greater changes were observed in the presence of 1.5 μM rotenone: enzymatic activity descended to 23% of the control value, while the NADH/NAD+ and NADPH/NADP+ ratios rose to 171% and 262% of their initial values, respectively. Such results indicate that the lowered redox potential of the pyridine nucleotide pool existing when glucono-δ-lactone is oxidized promotesin vivo inactivation of glutathione reductase.  相似文献   
8.
The effects of the enantiomers of ibuprofen (0.25 and 0.50 mmol/kg b.w.) and flurbiprofen (0.01, 0.03, and 0.06 mmol/kg b.w.) on the beta-oxidation of palmitate were investigated in the rat. The mean cumulative exhalation of 14CO2 after ip administration of [U-14C]palmitic acid was significantly reduced over 6 h by ibuprofen at the higher dose but not at the lower dose for either enantiomer. There was no difference between the enantiomers, the reduction over 6 h being 31.3 and 33.0% for (R)- and (S)-ibuprofen, respectively. There was also a significant inhibition of beta-oxidation by flurbiprofen at all 3 doses. Again, there was no stereoselectivity evident in this inhibition. Flurbiprofen was much more potent than ibuprofen in eliciting this effect, the 0.01mmol/kg dose giving a similar reduction in beta-oxidation as observed for the 0.50 mmol/kg dose of ibuprofen. The data support the hypothesis that inhibition of the in vivo beta-oxidation of palmitate by ibuprofen and flurbiprofen is primarily via a nonstereoselective noncoenzyme A-dependent mechanism.  相似文献   
9.
Coenzyme Q (CoQ0) and other quinones were shown to be potent insulin secretagogues in the isolated pancreatic islet. The order of potency was CoQ0benzoquinonehydroquinonemenadione. CoQ6 and CoQ10 (ubiquinone), duroquinone and durohydroquinone did not stimulate insulin release. CoQ0's insulinotropism was enhanced in calcium-free medium and CoQ0 appeared to stimulate only the second phase of insulin release. CoQ0 inhibited inositol mono-, bis- and trisphosphate formation. Inhibitors of mitochondrial respiration (rotenone, antimycin A, FCCP and cyanide) and the calcium channel blocker verapamil, did not inhibit CoQ0-induced insulin release. Dicumarol, an inhibitor of quinone reductase, did not inhibit CoQ0-induced insulin release, but it did inhibit glucose-induced insulin release suggesting that the enzyme and quinones play a role in glucose-induced insulin release. Quinones may stimulate insulin release by mimicking physiologically-occuring quinones, such as CoQ10, by acting on the plasma membrane or in the cytosol. Exogenous quinones may bypass the quinone reductase reaction, as well as many reactions important for exocytosis.  相似文献   
10.
Four different nucleotide-gated ion channels are discussed in terms of their biophysical properties and their importance in cell physiology. Channels activated directly by cGMP are present in vertebrate and invertebrate photoreceptors. In both cases cGMP increases the fraction of time the channel remains in the open state. At least three cGMP molecules are involved in channel opening in vertebrate photoreceptors and the concentration of the cyclic nucleotide to obtain the half maximal effect is about 15 µM. The light-dependent channel of both vertebrates and invertebrates is poorly cation selective. The vertebrate channel allows divalent cations to pass through 10–15-fold more easily than monovalent ions. In agreement with their preference for divalent cations, this channel is blocked byl-cis Dialtazem, a molecule that blocks certain types of calcium channels. In olfactory neurons a channel activated by both cAMP and cGMP is found and, as in the light-dependent channel, several molecules of the nucleotide are needed to open the channel with a half maximal effect obtained in the range of 1–40 µM. The channel is poorly cationic selective. A K+ channel directly and specifically activated by cAMP is found inDrosophila larval muscle. At least three cAMP molecules are involved in the opening reaction. Half-maximal effect is obtained at about 50 µM. This channel is blocked by micromolar amount of tetraethylammonium applied internally. Interestingly, this channel has a probability of opening 10–20-fold larger in the mutantdunce, a mutant that possesses abnormally elevated intracellular cAMP level, than in the wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号