首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  27篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
排序方式: 共有27条查询结果,搜索用时 6 毫秒
21.
A series of 4,5-dihydro-1,5-diaryl-1H-pyrazole-3-substituted-heteroazoles were designed and synthesized in order to obtain new compounds with potential anti-inflammatory activity. The title compounds were screened for in vivo anti-inflammatory activity by using Carrageenan induced rat paw edema method. Diclofenac sodium was used as a standard drug for comparison. Out of the 30 compounds tested, compound 19a, 19b, 25a, 25b exhibited significant anti-inflammatory activity. Selected compounds were also screened for in vitro COX-2 inhibition assay and analgesic activity in the acetic acid induced writhing model.  相似文献   
22.
2-Pyrazolins 14a–l and pyrazoles 15a–l were designed as celecoxib analogs for the evaluation of their in vitro COX-1/COX-2 inhibitory activity and the in vivo anti-inflammatory activity. Compounds 14i, 15a, 15d and 15f were the most COX-2 selective derivatives (S.I. = 5.93, 6.08, 5.03 and 5.27 respectively) while the pyrazoline derivatives 14g and 14i exhibited the highest AI activity (ED50 = 190.5 and 160.1 μmol/kg po, respectively).  相似文献   
23.
Pregnenolone (1) was used as a template to develop new anticancer compounds. Ring-D modification of 1 resulted in the synthesis of benzylidenes 2-17, pyrazolines 18-76, pyrazoles 85-91, hydrazones 77-84, and oximes 92-107 derivatives. The structure of compound 107 was also deduced through single crystal X-ray diffraction studies. The inclusion of furanyl and pyridyl rings to pregnenolone skeleton increases the cytotoxicity of all compounds significantly. Among benzylidene derivatives, only heterocyclic enone 8 (IC50 = 0.74 μM/mL against HepG2), and 17 (IC50 = 4.49 μM/mL against HepG2, IC50 = 5.01 μM/mL against MDA-MB-230 cancer cell line) exhibited a significant activity. The cytotoxicity data of pyrazoline derivatives 18-76 revealed that only furanyl bearing pyrazolines 40, 42-44, 48, and 49 exhibited significant activities. While all (O-carboxymethyl) oximes, hydazones, and pyrazoles derivatives of pregnenolone did not show any significant activity against both the cell lines. Thus the furanyl bearing enone 8 (IC50 = 0.74 μM/mL against HepG2), and its pyrazoline derivative 48 (IC50 = 0.91 μM/mL against MDA-MB-230 cancer cell lines) were identified as the most active compounds in all derivatives of pregnenolone.  相似文献   
24.
Chiral pyrazoline amino acids (3aR,4S,6aR)-1a and (3aR,4S,6aR)-1b, and (3aS,6S,6aS)-2a and (3aS,6S,6aS)-2b, which are conformationally constrained analogues of glutamic and homoglutamic acid, respectively, were prepared via a strategy based on the 1,3-dipolar cycloaddition of a nitrile imine to methyl N-Boc-3,4-didehydro-(S)-prolinate. The new 'amino acids' were tested for activity at ionotropic glutamate receptors. Solely the derivative (3aR,4S,6aR)-1a, which is structurally related to the previously described 4,5-dihydroisoxazole analogue (S)-CIP-A, turned out to be a potent and selective agonist for the AMPA receptors. The biological activity is due to the interaction with the orthosteric glutamate binding site.  相似文献   
25.
A series of N1-nicotinoyl-3- (4-hydroxy-3-methyl phenyl)-5-(substituted phenyl)-2-pyrazolines were synthesized by the reaction between isoniazid (INH) and chalcones and were tested for their in vitro anti-viral activity. Among the compounds, the electron withdrawing group substituted analogues 5-(4-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4, 5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4b), 5-(2-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4i), 5-(4-fluorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4h) and 5-(2,6-dichlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridyl methanone (4j) were the most promising and the halogeno function appeared to be essential for antiviral activity.  相似文献   
26.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   
27.
Design, synthesis and pharmacological activities of a group of 1,3,5-trisubstituted pyrazolines were reported. The chemical structures of the synthesized compounds have been assigned on the basis of IR, MS, 1H NMR, and 13C NMR spectral analyses. The synthesized 1,3,5-trisubstituted pyrazoline derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay. Among the tested compounds, derivatives 4h, 6e, 7a, 7e, and 9 showed more potent anti-inflammatory and analgesic activities than the reference drug celecoxib. On the basis of their higher activities in the in vivo studies compared with celecoxib, the five compounds 4h, 6e, 7a, 7e and 9 were selected to test their inhibitory activities against ovine COX-1/2 using an in vitro cyclooxygenase inhibition assay. Docking study of compounds 7a, 7e and 9 into the COX-2 binding site revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号