首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   47篇
  国内免费   9篇
  372篇
  2024年   5篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   15篇
  2019年   13篇
  2018年   14篇
  2017年   15篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   34篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   15篇
  2008年   18篇
  2007年   15篇
  2006年   14篇
  2005年   13篇
  2004年   6篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有372条查询结果,搜索用时 12 毫秒
31.
ABSTRACT. A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to ISO nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   
32.
Acylation of Pseudomonas cepacia lipase with Pyromellitic dianhydride to modify 72% of total amino groups was carried out. Different organic solvents were screened for precipitation of modified lipase. It was found that 1,2-dimethoxyethane was the best precipitant which precipitated 97% protein and complete activity. PCMC (protein coated microcrystals), CLPCMC (crosslinked protein coated microcrystals), EPROS (enzyme precipitated and rinsed with organic solvents) and pH tuned preparations of modified and unmodified lipase were prepared and used for carrying out transesterification reaction with n-octane and dimethyl formamide (DMF) as reaction medium. In n-octane, among all the preparations, CLPCMC of modified lipase gave highest rate (1970 nmol min−1 mg−1) as compared to unmodified pH tuned lipase (128 nmol min−1 mg−1). In DMF, with both 1% (v/v) and 5% (v/v) water content, CLPCMC showed highest initial rate of 0.72 and 7.2 nmol min−1 mg−1, respectively. Unmodified pH tuned lipase showed no activity at all in DMF with both 1% and 5% (v/v) water content.  相似文献   
33.
We present results of molecular dynamics computer simulations of hexane (C6H14 or C6) and pentane (C5H12 or C5) adlayers physisorbed onto a graphite substrate, for various submonolayer coverages. The hexane and pentane molecules incorporate explicit hydrogens and the graphite is modelled as a six-layer all-atom structure. Even though C6 and C5 have different structures at monolayer completion, both systems generally behave similarly in the submonolayer regime and results are in reasonable agreement with experiment for both systems. Specifically, there are four distinct topological regimes involving empty space: at densities closest to full coverage, there are large domains with individual vacancies, then with decreasing density, large vacancy patches appear first, followed by the formation of connected networks of smaller domains with multiple orientations that ultimately separate into individual patches. The energetics and melting behaviour of all systems are readily understood within the framework of the topology presented at various densities.  相似文献   
34.
Dual‐ion batteries (DIBs) with high operation voltage offer promising candidates for low‐cost clean energy chemistries. However, there still exist tough issues, including structural collapse of the graphite cathode due to solvent co‐intercalation and electrolyte decomposition on the electrode/electrolyte interface, which results in unsatisfactory cyclability and fast battery failure. Herein, Li4Ti5O12 (LTO) modified mesocarbon microbeads (MCMBs) are proposed as a cathode material. The LTO layer functions as a skeleton and offers electrocatalytic active sites for in situ generation of a favorable and compatible cathode electrolyte interface (CEI) layer. The synergetic LTO‐CEI network can change the thermodynamic behavior of the PF6? intercalation process and maintain the structural integrity of the graphite cathode, as a “Great Wall” to protect the cathode from structural collapse and electrolyte decomposition. Such LTO‐CEI reinforced cathode exhibits a prolonged cyclability with 85.1% capacity retention after 2000 cycles even at cut‐off potential of 5.4 V versus Li+/Li. Moreover, the LTO‐modified MCMB (+)//prelithiated MCMB (?) full cell exhibits a high energy density of ≈200 Wh kg?1, remarkably enhanced cyclability with 93.5% capacity retention after 1000 cycles. Undoubtedly, this work offers in‐depth insight into interface chemistry, which can arouse new originality to boost the development of DIBs.  相似文献   
35.
Abstract

A multilayer film of argon adsorbed on the basal plane of graphite at 103 K was simulated using isokinetic molecular dynamics. The local chemical potentials in the film were evaluated using three algorithms suggested in the literature: test particle insertion, real particle calculation and the ratio method, which relies on calculations of the local energy distribution functions for test and real particles. Although none of these was suitable for calculations involving the partially solidified first adsorbed layer, the test particle and the ratio method produced useful results for regions in the film corresponding to second and higher layers. The ratio method is shown to be the most realistic, giving constant local chemical potentials of reasonably high precision for all points other than in the first layer.  相似文献   
36.
The graphene nanosheets and carbon nanospheres mixture (GNS–CNS) was prepared by electrolyzing graphite rob in KNO3 solution under constant current, which was characterized by TEM, AFM, SEM, FT-IR, XRD, XPS, TGA and UV–vis. The nano-mixture can keep stable in water for more than one month. Based on this kind of mixture material, a novel electrochemical biosensing platform for glucose determination was developed. Cyclic voltammetry of glucose oxidase (GOD) immobilized on GNS–CNS/GCE exhibited a pair of well-defined quasi-reversible redox peaks at −0.488 V (Epa) and −0.509 V (Epc) by direct electron transfer between the protein and the electrode. The charge-transfer coefficient (α) was 0.51, the electron transfer rate constant was 2.64 s−1 and the surface coverage of HRP was 3.18 × 10−10 mol cm−2. The immobilized GOD could retain its bioactivity and catalyze the reduction of dissolved oxygen. The glucose biosensor has a linear range from 0.4 to 20 mM with detection limit of 0.1 mM. Moreover, the biosensor exhibits acceptable reproducibility and storage stability. The fabricated biosensor was further used to determine glucose in human plasma sample with the recoveries from 96.83% to 105.52%. Therefore, GOD/GNS–CNS/GCE could be promisingly applied to determine blood sugar concentration in the practical clinical analysis.  相似文献   
37.
There is a complex network of protein–protein and protein–lipid interactions that underlie clathrin-mediated vesicular traffic in all compartmentalized cells from yeast to man. Major progress has been made in the determination of the three-dimensional structures of many of the components. Recently, there has been an explosion in the identification and characterization of clathrin binding partners. This review integrates the structural and biochemical information that is currently available to present a unified view of how many clathrin binding partners interact with clathrin.  相似文献   
38.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   
39.
Highly vacuolated suspensor cells of spruce somatic embryos were examined by immunofluorescence light microscopy using butyl-methyl-methacrylate (BMM) and polyethylene glycol (PEG) embedded sections, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The use of PEG embedded embryos provided a rapid method for light microscope detection of antigens before committing to FESEM analysis. BMM embedded specimens provided well preserved suspensor cells for immunofluorescence. FESEM permitted high resolution observation of large areas of the inner surface of the plasma membrane and associated cell organelles. Suspensor cells contained mostly transversely oriented cortical microtubules linked to the plasma membrane and adjacent microtubules by cross- bridges. Light and electron microscopy revealed numerous clathrin coated structures on the plasma membrane. These included flat patches of clathrin, coated pits and coated vesicles. Many coated vesicles were associated with microtubules. Both tubular and lamellar endoplasmic reticulum were observed on the plasma membrane by FESEM.  相似文献   
40.
Abstract

Square planar mononuclear platinum(II) complexes having general formula [Pt(Ln)Cl2], (where, Ln?=?L1–4) were synthesized with neutral bidentate heterocyclic 1,3,5-trisubstituted bipyrazole based ligands. The synthesized compounds were characterized by physicochemical method such as TGA, molar conductance, micro-elemental analysis and magnetic moment, and spectroscopic method such as, FT-IR, UV–vis, 1H NMR, 13C NMR and mass spectrometry. Biological applications of the compounds were carried out using in vitro brine shrimp lethality bioassay, in vitro antimicrobial study against five different pathogens, and cellular level cytotoxicity against Schizosaccharomyces pombe (S. Pombe) cells. Pt(II) complexes were tested for DNA interaction activities using electronic absorption titration, viscosity measurements study, fluorescence quenching technique and molecular docking assay. Binding constants (Kb) of ligands and complexes were observed in the range of 0.23–1.07?×?105?M?1 and 0.51–3.13?×?105?M?1, respectively. Pt(II) complexes (I–IV) display an excellent binding tendency to biomolecule (DNA) and possess comparatively high binding constant (Kb) values than the ligands. The DNA binding study indicate partial intercalative mode of binding in complex-DNA. The gel electrophoresis activity was carried out to examine DNA nuclease property of pUC19 plasmid DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号