首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   6篇
  国内免费   23篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   51篇
  2012年   10篇
  2011年   9篇
  2010年   6篇
  2009年   15篇
  2008年   15篇
  2007年   19篇
  2006年   8篇
  2005年   10篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   13篇
  1999年   11篇
  1998年   16篇
  1997年   8篇
  1996年   1篇
  1995年   8篇
  1994年   13篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
301.
Abstract Cell envelopes of Pseudomonas fluorescens , cytoplasmic membrane, peptidoglycan and outer membrane were obtained from a fractionation procedure and tested for their metal binding capacity. Isolated envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) were chemically modified and functional carboxyl groups transformed to electropositive amine groups, using carbodiimide ethylenediamine. Transformation of carboxyl groups was evaluated by measuring total amine groups in all fractions (modified or not). Using equilibrium dialysis and Scatchard plots for the data, we have established that isolated unmodified cell envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) possess at least two types of metal binding sites with different association constants ( K a and K 'a). Introduction of positive charges into the bacterial envelopes resulted in the disappearance of one type of metal binding site which had the highest association constant value for Ni2+, Cu2+ and Zn2+. All fractions, modified or not, always presented at least two types of binding sites with different association constants for Cd2+.  相似文献   
302.
303.
Abstract Monic acid A was isolated from a Pseudomonas fluorescens fermentation in which pseudomonic acid A (PA) was the principal secondary metabolite. [3-14C]3-Hydroxy-3-methyl-glutaric acid (HMG) given early in the idiophase radiolabelled PA (1.1% incorporation), confirming experimentally the putative direct involvement of HMG in the biosynthesis of PA, but contributed relatively insignificant radiolabel to the monic acid extracted from the broth at the end of the fermentation. Ethionine inhibited (80%) PA biosynthesis and correspondingly reduced incorporation of [14C]HMG. In contrast, ethionine increased incorporation of [methyl-14C]methionine into PA and enhanced specific radioactivity of the antibiotic 8-fold. Ethionine inhibition of secondary metabolite methylations did not divert pseudomonate biosynthesis to give unusual analogues, implying that methylation of a putative pentaketide precursor of the monate moiety forms a vital intermediate of the pseudomonate pathway, but caused a new [14C]HMG-derived polar metabolite of biosynthetic interest to become evident.  相似文献   
304.
Abstract Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations ranging from 0.5 to 5.0% (w/v). Survival of bacterial cells was improved with the use of alginate or bentonite. Transport, as determined by destructive sampling of the columns, was reduced with the use of alginate encapsulation. Drying of the beads had no influence on transport. The presence of bentonite in the topsoil, either pre-mixed through the soil, or applied as a slurry together with the bacteria, also reduced transport, except when 0.5% was pre-mixed through the soil. P. fluorescens cells encapsulated in alginate beads prepared with water and supplemented with skim milk powder and bentonite showed the best survival during the time of the experiment and the most reduced transport compared to the control. Therefore, cells encapsulated in this way are suitable, due to their optimal survival and reduced spread, for use in a field experiment with genetically manipulated bacteria.  相似文献   
305.
306.
Abstract Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae . It was purified from one P. fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40°C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. fluorescens and pure bovine pancreatic RNAase A which were active even at 65°C, RNAase-HL was totally and irreversibly inactivated at 65°C.  相似文献   
307.
Luminescent strains of Pseudomonas fluorescens 10586 were constructed in which luciferase production was constitutive by introduction of Vibrio fischeri luxABE genes on the chromosome and on a multicopy plasmid. Light production in liquid batch culture was directly proportional to biomass concentration during exponential growth and enabled detection by luminometry of 1.7 × 103 and 8.9 × 104 cells/ml for the plasmid and chromosomally marked strains, respectively. Luminescent colonies of both strains were detectable by eye, enabling viable cell enumeration on solid media against a background of non-luminescent strains. Following inoculation into sterile and non-sterile soil lower levels of detection were increased but detection of 8.1–59 × 103and 2.2–30 × 103 cells per g of soil was possible for plasmid and chromosomally marked strains. Maximum specific growth rate in liquid culture was unaffected by introduction of lux marker genes on the chromosome, but was reduced in the plasmid marked strain. The chromosomally encoded marker was stable in both liquid culture and in soil, but the plasmid was unstable during continuous subculturing in liquid medium and during growth in soil. The chromosomally encoded luminescence-marker system therefore provides a convenient, non-extractive technique for quantification of genetically modified soil microbial inocula.  相似文献   
308.
Aims:  To investigate the mechanism of insoluble phosphate (P) solubilization and plant growth-promoting activity by Pseudomonas fluorescens RAF15.
Methods and Results:  We investigated the ability of Ps. fluorescens RAF15 to solubilize insoluble P via two possible mechanisms: proton excretion by ammonium assimilation and organic acid production. There were no clear differences in pH and P solubilization between glucose-ammonium and glucose-nitrate media. P solubilization was significantly promoted with glucose compared to fructose. Regardless of nitrogen sources used, Ps. fluorescens RAF15 solubilized little insoluble P with fructose. High performance liquid chromatography analysis showed that Ps. fluorescens RAF15 produced mainly gluconic and tartaric acids with small amounts of 2-ketogluconic, formic and acetic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with soluble P concentration. Ps. fluorescens RAF1 showed the properties related to plant growth promotion: pectinase, protease, lipase, siderophore, hydrogen cyanide, and indoleacetic acid.
Conclusion:  This study indicated that the P solubility was directly correlated with the organic acids produced.
Significance and Impact of the Study:  Pseudomonas fluorescens RAF15 possessed different traits related to plant growth promotion. Therefore, Ps. fluorescens RAF15 could be a potential candidate for the development of biofertilizer or biocontrol agent.  相似文献   
309.
Drug rotation (cycling), in which multiple drugs are administrated alternatively, has the potential for limiting resistance evolution in pathogens. The frequency of drug alternation could be a major factor to determine the effectiveness of drug rotation. Drug rotation practices often have low frequency of drug alternation, with an expectation of resistance reversion. Here we, based on evolutionary rescue and compensatory evolution theories, suggest that fast drug rotation can limit resistance evolution in the first place. This is because fast drug rotation would give little time for the evolutionarily rescued populations to recover in population size and genetic diversity, and thus decrease the chance of future evolutionary rescue under alternate environmental stresses. We experimentally tested this hypothesis using the bacterium Pseudomonas fluorescens and two antibiotics (chloramphenicol and rifampin). Increasing drug rotation frequency reduced the chance of evolutionary rescue, and most of the finally surviving bacterial populations were resistant to both drugs. Drug resistance incurred significant fitness costs, which did not differ among the drug treatment histories. A link between population sizes during the early stages of drug treatment and the end-point fates of populations (extinction vs survival) suggested that population size recovery and compensatory evolution before drug shift increase the chance of population survival. Our results therefore advocate fast drug rotation as a promising approach to reduce bacterial resistance evolution, which in particular could be a substitute for drug combination when the latter has safety risks.  相似文献   
310.
The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号