首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3299篇
  免费   138篇
  国内免费   325篇
  3762篇
  2024年   6篇
  2023年   34篇
  2022年   51篇
  2021年   68篇
  2020年   73篇
  2019年   80篇
  2018年   61篇
  2017年   70篇
  2016年   69篇
  2015年   83篇
  2014年   113篇
  2013年   328篇
  2012年   119篇
  2011年   137篇
  2010年   101篇
  2009年   217篇
  2008年   196篇
  2007年   193篇
  2006年   142篇
  2005年   145篇
  2004年   125篇
  2003年   128篇
  2002年   101篇
  2001年   103篇
  2000年   87篇
  1999年   85篇
  1998年   88篇
  1997年   80篇
  1996年   60篇
  1995年   68篇
  1994年   82篇
  1993年   69篇
  1992年   65篇
  1991年   45篇
  1990年   44篇
  1989年   41篇
  1988年   33篇
  1987年   30篇
  1986年   29篇
  1985年   19篇
  1984年   23篇
  1983年   3篇
  1982年   12篇
  1981年   11篇
  1980年   13篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1976年   9篇
排序方式: 共有3762条查询结果,搜索用时 15 毫秒
81.
The de novo pyrimidine biosynthetic enzymes in the denitrifying bacterium Pseudomonas stutzeri ATCC 17588 were assayed and their activities were lower in glucose-grown cells than in succinate-grown cells. When P. stutzeri was grown in the presence of uracil, the de novo enzyme activities in succinate-grown cells were lowered while they remained largely unchanged in glucose-grown cells. A uracil auxotroph of P. stutzeri, deficient for aspartate transcarbamoylase activity, was isolated and its auxotrophic requirement was met by only uracil and cytosine. The inability of pyrimidine ribonucleosides to meet the auxotrophic requirement was related to the limited ability of P. stutzeri to transport uridine and cytidine. Pyrimidine limitation of the auxotroph elevated the de novo enzyme activities indicating that this pathway may be repressible by a uracil-related compound in succinate-grown P. stutzeri cells. Regulation of pyrimidine synthesis in P. stutzeri was similar to that observed for other pseudomonads classified within rRNA homology group I.  相似文献   
82.
Strains of Pseudomonas fluorescens were investigated for biocontrol efficacy against tomato spotted wilt virus (TSWV) in tomato both alone and in mixtures. P. fluorescens strains applied to seed, soil and foliage or as a seedling dip significantly reduced TSWV, with a concomitant increase in growth promotion in both the glasshouse and field. Two native strains (CoP-1 and CoT-1) and one foreign strain (CHAO) reduced TSWV. In P. fluorescens-treated tomato plants, increased activity of polyphenol oxidase, β-1,3-glucanase and chitinase was observed, and induction of chitinase was confirmed by western blot analysis. Induction of new protein (18 kDa) detected by SDS-PAGE in P. fluorescens-treated tomato plants was not found in healthy and P. fluorescens-untreated virus inoculated control plants. Indirect ELISA clearly showed a reduction in viral antigen concentration in P. fluorescens-treated tomato plants corresponding to reduced disease ratings. All the P. fluorescens-treated tomato plants also showed enhanced growth and yield compared to control plants. Hence, plant growth promoting rhizobacteria (PGPR) could play a major role in reducing TSWV and increasing yield in tomato plants.  相似文献   
83.
Recombinant strains of Ralstonia eutropha and Pseudomonas putida harboring a chimeric polyhydroxyalkanoate (PHA) synthase, which consisted of PHA synthases of Aeromonas caviae and R. eutropha, produced 3-hydroxybutyrate (3HB)-based PHA copolymers comprised of 3-hydroxyhexanoate and 3-hydroxyoctanoate units from dodecanoate (87–97 mol % 3HB), indicating that the chimeric PHA synthase possesses desirable substrate specificity leading to the production of 3HB-rich copolymers.  相似文献   
84.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   
85.
To investigate the pathogenicity of Pseudomonas aeruginosa in insects, a gacA mutant of P. aeruginosa PA01 was constructed by site-directed mutagenesis. The mutant was designated as C1. C1 was less virulent to Bombyx mori than the parent strain. To complement the gacA gene, P. aeruginosa C1 was transformed with the broad host range plasmid pJB3Km1 carrying a 3.9-kbp gacA fragment. The expression of the gacA mRNA in C1 (pgacA) was detected. In addition, the complemented mutant restored the level and timing of pyocyanin production, indicating that functional GacA is produced in the complemented strain. However, no significant difference was observed between C1 and C1 (pgacA) with respect to the killing of B. mori larvae.  相似文献   
86.
【目的】本实验室保藏的一株异化硝酸盐还原菌(Pseudomonas alcaliphila MBR),其能够在好氧环境下以有机碳源为电子供体,把易溶解、高毒性亚硒酸钠还原成为红色单质硒,本文对该菌株还原亚硒酸盐的特征进行了研究。【结果】结果表明该菌株可以在pH为6-11环境中生长,对亚硒酸钠有较强抗性,其MIC(minimal inhibitory concentration)可高达50 mmol/L。在5天时间内,菌体以柠檬酸钠为电子供体,把2 mmol/L亚硒酸钠完全还原为红色单质硒并主要积累于胞外。硝酸盐和还原型谷胱甘肽对菌体还原亚硒酸钠具有促进作用,初步确定菌体对亚硒酸钠的还原是细胞膜或细胞质中的某些物质催化的结果。【结论】本项研究为应用Pseudomonas alcaliphila MBR于生物反应器提供了重要基础。  相似文献   
87.
The first synthesis of a d-rhamnose branched tetrasaccharide, corresponding to the repeating unit of the O-chain from Pseudomonas syringae pv. cerasi 435, as methyl glycoside is reported. The approach used is based on the synthesis of an opportune building-block, that is the methyl 3-O-allyl-4-O-benzoyl-alpha-D-rhamnopyranoside, which was then converted into both a glycosyl acceptor and two different protected glycosyl trichloroacetimidate donors. Successive couplings of these three compounds afforded the target oligosaccharide. The reported synthesis is also useful to perform the oligomerization of the repeating unit.  相似文献   
88.
The biosynthesis of antimicrobial metabolites is controlled by the GacS/GacA two-component regulatory system in Pseudomonas species. The production of phenazine-1-carboxylic acid and pyoluteorin is differentially regulated by GacA in Pseudomonas sp. M18. Pyoluteorin was reduced to nondetectable level in culture of the gacA insertional mutant strain M18G grown in King's medium B broth, whereas phenazine-1-carboxylic acid production was increased 30-fold over that of the wild-type strain. Production of both antibiotics was restored to wild-type levels after complementation in trans with the wild-type gacA gene. Expression of the translational fusions phzA'-'lacZ and pltA'-'lacZ confirmed the effect of GacA on both biosynthetic operons.  相似文献   
89.
90.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号