首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3289篇
  免费   138篇
  国内免费   323篇
  2024年   5篇
  2023年   32篇
  2022年   45篇
  2021年   68篇
  2020年   72篇
  2019年   80篇
  2018年   61篇
  2017年   68篇
  2016年   69篇
  2015年   83篇
  2014年   113篇
  2013年   328篇
  2012年   119篇
  2011年   137篇
  2010年   101篇
  2009年   217篇
  2008年   196篇
  2007年   193篇
  2006年   142篇
  2005年   145篇
  2004年   125篇
  2003年   128篇
  2002年   101篇
  2001年   103篇
  2000年   87篇
  1999年   85篇
  1998年   88篇
  1997年   80篇
  1996年   60篇
  1995年   68篇
  1994年   82篇
  1993年   69篇
  1992年   65篇
  1991年   45篇
  1990年   44篇
  1989年   41篇
  1988年   33篇
  1987年   30篇
  1986年   29篇
  1985年   19篇
  1984年   23篇
  1983年   3篇
  1982年   12篇
  1981年   11篇
  1980年   13篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1976年   9篇
排序方式: 共有3750条查询结果,搜索用时 15 毫秒
101.
鼠李糖脂因其具有环境友好和卓越的物理化学特性,而有望成为化学合成表面活性剂的替代物。近年来鼠李糖脂得到了广泛的研究,其目的是利用低价的可再生资源进行大规模生产,但目前的研究成果仍不足以选育出更具商业竞争力的鼠李糖脂过量合成菌株。为此,进一步理解鼠李糖脂生物合成的复杂基因调控网络,探索降低生产成本的发酵工艺势在必行。综述了铜绿假单胞菌中鼠李糖脂的生物合成途径、群体感应对主要基因的调控、鼠李糖脂在生物膜形成中所发挥的作用,以及发酵优化对鼠李糖脂产量的影响。有助于加深对鼠李糖脂生物合成的认识,为提高鼠李糖脂产量提供重要参考信息。  相似文献   
102.
103.
104.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   
105.
Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl‐tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs, governing interactions with tRNA, were 1.0 μM and 0.15 s?1, respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three‐dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad‐spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild‐type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time‐kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 μg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.  相似文献   
106.
Intracellular protein degradation is essential for the survival of all organisms, but its role in interspecies interaction is unknown. Here, we show that the ClpXP protease of Pseudomonas aeruginosa suppresses its antimicrobial activity against Staphylococcus aureus, a common pathogen co-isolated with P. aeruginosa from polymicrobial human infections. Using proteomic, biochemical, and molecular genetic approaches, we found that this effect is due to the inhibitory effects of ClpXP on the quorum sensing (QS) of P. aeruginosa, mainly by degrading proteins (e.g., PhnA, PhnB, PqsR, and RhlI) which are critical for the production of QS signal molecules PQS and C4-HSL. We provide evidence that co-culturing with S. aureus induces a decrease in the activity of ClpXP in P. aeruginosa, an effect which was also achieved by the treatment of P. aeruginosa with N-acetylglucosamine (GlcNAc), a widespread chemical present on the surface of diverse cell types from bacteria to humans. These findings extend the range of biological events governed by proteolytic machinery to microbial community structure, thus also suggesting that a chemical-induced alteration of protein homeostasis is a mechanism for interspecies interactions.  相似文献   
107.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   
108.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   
109.
Tens of thousands of bacterial genome sequences are now known due to the development of rapid and inexpensive sequencing technologies. An important key in utilizing these vast amounts of data in a biologically meaningful way is to infer the function of the proteins encoded in the genomes via bioinformatics techniques. Whereas these approaches are absolutely critical to the annotation of gene function, there are still issues of misidentifications, which must be experimentally corrected. For example, many of the bacterial DNA sequences encoding sugar N‐formyltransferases have been annotated as l ‐methionyl‐tRNA transferases in the databases. These mistakes may be due in part to the fact that until recently the structures and functions of these enzymes were not well known. Herein we describe the misannotation of two genes, WP_088211966.1 and WP_096244125.1, from Shewanella spp. and Pseudomonas congelans, respectively. Although the proteins encoded by these genes were originally suggested to function as l ‐methionyl‐tRNA transferases, we demonstrate that they actually catalyze the conversion of dTDP‐4‐amino‐4,6‐dideoxy‐d ‐glucose to dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose utilizing N10‐formyltetrahydrofolate as the carbon source. For this analysis, the genes encoding these enzymes were cloned and the corresponding proteins purified. X‐ray structures of the two proteins were determined to high resolution and kinetic analyses were conducted. Both enzymes display classical Michaelis–Menten kinetics and adopt the characteristic three‐dimensional structural fold previously observed for other sugar N‐formyltransferases. The results presented herein will aid in the future annotation of these fascinating enzymes.  相似文献   
110.
The influence of operational conditions (pH, temperature and oxygen transfer rate) on the initial reaction rates of the four reactions involved in the 4S biodesulfurization route of dibenzothiophenes (DBT) has been studied. The bioprocess was carried out using a genetically modified organism, Pseudomonas putida CECT 5279. The rates of the four reactions were calculated from the rates of production of different compounds involved in the 4S pathway, by matrix manipulation. The initial (zero time) reaction rates showed a slight dependence on oxygen transfer rate. Temperature and pH were optimal at 30°C and 9, respectively, temperature being the most important variable. This study also identifies the last reaction as the limiting step in the pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号