首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   23篇
  国内免费   43篇
  2023年   6篇
  2022年   12篇
  2021年   8篇
  2020年   10篇
  2019年   30篇
  2018年   23篇
  2017年   12篇
  2016年   16篇
  2015年   19篇
  2014年   37篇
  2013年   63篇
  2012年   20篇
  2011年   28篇
  2010年   30篇
  2009年   48篇
  2008年   49篇
  2007年   49篇
  2006年   32篇
  2005年   34篇
  2004年   23篇
  2003年   19篇
  2002年   29篇
  2001年   8篇
  2000年   9篇
  1999年   14篇
  1998年   18篇
  1997年   17篇
  1996年   9篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   16篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有817条查询结果,搜索用时 15 毫秒
81.
京大戟是多年生草本药用植物,入药部分是其干燥根,但可入药的京大戟资源由于生长缓慢以及环境污染的加剧而越发匮乏,因此解决大戟资源日益紧张的问题是当今药用植物资源开发与利用方向的重要课题。京大戟含有三萜类、二萜类、黄酮类等丰富的活性成分,一些常见药用植物的有效成分是三萜类化合物,其在抗病毒、抗肿瘤、免疫调节等方面具有很好的活性。对植物萜类物质代谢起重要作用的关键酶,如3-羟基,3-甲基戊二酰辅酶A还原酶(hmgr)、鲨烯合酶(sqs)、法尼基焦磷酸合酶(fps)的基因克隆及活性研究取得了进展和突破,但通过调控萜类物质代谢途径中关键酶基因的表达来诱导终产物合成的研究鲜有报道。通过研究大戟萜类物质代谢途径进而利用基因工程手段提升目的物质的产量来解决京大戟药源短缺问题具有重要意义。该研究以大戟愈伤组织为材料,使用茉莉酸甲酯分别按时间梯度和浓度梯度进行诱导,将诱导后的愈伤组织分为两部分:一部分提取其总RNA,以actin为内参基因进行反转录,实时定量RT-PCR分析大戟三萜类代谢途径中hmgr、sqs与fps基因的相对表达差异;另一部分用于提取其总三萜并使用分光光度法进行含量测定。实时定量RT-PCR分析结果表明,茉莉酸甲酯可诱导3个基因的表达,但其表达模式不一样。相应的京大戟愈伤组织中总三萜的含量明显提高,最高可较未处理样品增加27%。研究结果可为茉莉酸甲酯促进药用植物大戟三萜类物质积累的分子机制研究提供参考。  相似文献   
82.
83.
84.
Lysine acetylation is an important post-translational modification in the metabolic regulation of both prokaryotes and eukaryotes. In Escherichia coli, PatZ (formerly YfiQ) is the only known acetyltransferase protein and is responsible for acetyl-CoA synthetase acetylation. In this study, we demonstrated PatZ-positive cooperativity in response to acetyl-CoA and the regulation of acetyl-CoA synthetase activity by the acetylation level. Furthermore, functional analysis of an E809A mutant showed that the conserved glutamate residue is not relevant for the PatZ catalytic mechanism. Biophysical studies demonstrated that PatZ is a stable tetramer in solution and is transformed to its octameric form by autoacetylation. Moreover, this modification is reversed by the sirtuin CobB. Finally, an in silico PatZ tetramerization model based on hydrophobic and electrostatic interactions is proposed and validated by three-dimensional hydrodynamic analysis. These data reveal, for the first time, the structural regulation of an acetyltransferase by autoacetylation in a prokaryotic organism.  相似文献   
85.
Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis.  相似文献   
86.
An in vitro screening protocol was used to transform a systemically-distributed SCD inhibitor into a liver-targeted compound. Incorporation of a key nicotinic acid moiety enables molecular recognition by OATP transporters, as demonstrated by uptake studies in transfected cell lines, and likely serves as a critical component of the observed liver-targeted tissue distribution profile. Preclinical anti-diabetic oGTT efficacy is demonstrated with nicotinic acid-based, liver-targeting SCD inhibitor 10, and studies with a close-structural analog devoid of SCD1 activity, suggest this efficacy is a result of on-target activity.  相似文献   
87.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   
88.
Aims: To characterize a robust NAD+‐dependent formate dehydrogenase firstly obtained from a nonmethylotroph, Bacillus sp. F1. Methods and Results: The Bacillus sp. F1 NAD+‐dependent formate dehydrogenase (BacFDH) gene was cloned by TAIL‐PCR and heterologous expressed in Escherichia coli. BacFDH was stable at temperatures below 55°C, and the half‐life at 60°C was determined as 52·9 min. This enzyme also showed a broad pH stability and retained more than 80% of the activities after incubating in buffers with different pH ranging from 4·5 to 10·5 for 1 h. The activity of BacFDH was significantly enhanced by some metal ions. Moreover, BacFDH exhibited high tolerance to 20% dimethyl sulfoxide, 60% acetone, 10% methanol, 20% ethanol, 60% isopropanol and 20% n‐hexane. Like other FDHs, BacFDH displayed strict substrate specificity for formate. Conclusion: We isolated a robust formate dehydrogenase, designated as BacFDH, which showed excellent thermal stability, organic solvent stability and a broad pH stability. Significance and Impact of the Study: The multi‐aspect stability makes BacFDH a competitive candidate for coenzyme regeneration in practical applications of chiral chemicals and pharmaceuticals synthesis with a relatively low cost, especially for the catalysis performed in extreme pH conditions and organic solvents.  相似文献   
89.
D-glucosaminic acid was produced efficiently from glucosamine by oxidative fermentation using a newly isolated strain, Pseudomonas putida GNA5. After optimization of the fermentation process, 51.5 g L(-1) D-glucosaminic acid was produced from an initial concentration of 60 g L(-1) D-glucosamine-HCl after 72 h of oxidative fermentation, which corresponded to a molar yield of 95.4%. This production process is potentially of considerable economic significance because very few by-products were detected. Furthermore, D-glucosaminic acid was accumulated stably during the oxidative fermentation process without the addition of an inhibitor of D-glucosaminic acid breakdown, even though D-glucosamine was exhausted. These results suggest that the mechanisms of D-glucosaminic acid-related metabolism differ between Pseudomonas putida GNA5 and the strain Pseudomonas genera, which was previously reported to produce D-glucosaminic acid.  相似文献   
90.
The extremely thermostable NAD-dependent glutamate dehydrogenase (NAD-GluDH) from Pyrobaculum islandicum, a member of the Crenarchaeota, was crystallized, and its 3D structure has been determined by X-ray diffraction methods. The homohexameric structure of Pb. islandicum glutamate dehydrogenase (Pis-GluDH) was solved and refined at a resolution of 2.9A with a crystallographic R-factor of 19.9% (Rfree 26.0%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. The secondary structural elements and catalytically important residues of the enzyme were highly conserved among the NAD(P)-dependent GluDHs from other sources. A structural comparison of Pis-GluDH with other NAD(P)-dependent GluDHs suggests that a significant difference in the alpha8-loop-alpha9 region of this enzyme is associated with its coenzyme specificity. From the analysis of the 3D structure, hydrophobic interactions between intersubunits were found to be important features for the enzyme oligomerization. It has been reported that Pis-GluDH is highly thermostable, like the GluDH of the hyperthermophilic archaeum Pyrococcus furiosus, and the increase in the intersubunit ion pair networks is responsible for the extreme thermostability of the Pc. furiosus enzyme. However, the number of intersubunit ion pairs in the Pis-GluDH molecules is much smaller than those of the Pc. furiosus GluDH. The number of hydrophobic interactions at the intersubunit interfaces were increased and responsible for the extremely high thermostability. This indicates that the major molecular strategy for high thermostability of the GluDHs may be different for each hyperthermophile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号