首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   23篇
  国内免费   43篇
  2023年   6篇
  2022年   12篇
  2021年   8篇
  2020年   10篇
  2019年   30篇
  2018年   23篇
  2017年   12篇
  2016年   16篇
  2015年   19篇
  2014年   37篇
  2013年   63篇
  2012年   20篇
  2011年   28篇
  2010年   30篇
  2009年   48篇
  2008年   49篇
  2007年   49篇
  2006年   32篇
  2005年   34篇
  2004年   23篇
  2003年   19篇
  2002年   29篇
  2001年   8篇
  2000年   9篇
  1999年   14篇
  1998年   18篇
  1997年   17篇
  1996年   9篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   16篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有817条查询结果,搜索用时 328 毫秒
31.
Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.  相似文献   
32.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   
33.
Methenyltetrahydromethanopterin cyclohydrolase (Mch) is involved in the methanogenesis pathway of archaea as a C1 unit carrier where N5‐formyl‐tetrahydromethanopterin is converted to methenyl‐tetrahydromethanopterin. Mch from Methanobrevibacter ruminantium was cloned, purified, crystallized and its crystal structure solved at 1.37 Å resolution. A biologically active trimer, the enzyme is composed of two domains including an N‐terminal domain of six α‐helices encompassing a series of four β‐sheets and a predominantly anti‐parallel β–sheet at the C‐terminus flanked on one side by α‐helices. Sequence and structural alignments have helped identify residues involved in substrate binding and trimer formation. Proteins 2013; 81:2064–2070. © 2013 Wiley Periodicals, Inc.  相似文献   
34.

Biomineralization in heterogeneous aqueous systems results from a complex association between pre-existing surfaces, bacterial cells, extracellular biomacromolecules, and neoformed precipitates. Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance [ATR], diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mn-oxidation by Pseudomonas putida strain GB-1. Distinct differences in the adhesive properties of GB-1 were observed upon Mn oxidation. No adhesion to the ZnSe crystal surface was observed for planktonic GB-1 cells coated with biogenic MnO x , whereas cell adhesion was extensive and a GB-1 biofilm was readily grown on ZnSe, CdTe, and Ge crystals prior to Mn-oxidation. IR peak intensity ratios reveal changes in biomolecular (carbohydrate, phosphate, and protein) composition during biologically catalyzed Mn-oxidation. In situ monitoring via ATR-FTIR of an active GB-1 biofilm and DRIFT data revealed an increase in extracellular protein (amide I and II) during Mn(II) oxidation, whereas transmission mode measurements suggest an overall increase in carbohydrate and phosphate moieties. The FTIR spectrum of biogenic Mn oxide comprises Mn-O stretching vibrations characteristic of various known Mn oxides (e.g., “acid” birnessite, romanechite, todorokite), but it is not identical to known synthetic solids, possibly because of solid-phase incorporation of biomolecular constituents. The results suggest that, when biogenic MnO x accumulates on the surfaces of planktonic cells, adhesion of the bacteria to other negatively charged surfaces is hindered via blocking of surficial proteins.  相似文献   
35.
36.
Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2′-phosphate of NADPH, but also could enhance the binding with 2′-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2′-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.  相似文献   
37.
A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His261, which coordinates one of the Fe atoms with Cys295, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys295, we constructed CODH-II variants. Ala substitution for the Cys295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys295 indirectly and His261 together affect Ni-coordination in the C-cluster.  相似文献   
38.
Recombinant strains of Ralstonia eutropha and Pseudomonas putida harboring a chimeric polyhydroxyalkanoate (PHA) synthase, which consisted of PHA synthases of Aeromonas caviae and R. eutropha, produced 3-hydroxybutyrate (3HB)-based PHA copolymers comprised of 3-hydroxyhexanoate and 3-hydroxyoctanoate units from dodecanoate (87–97 mol % 3HB), indicating that the chimeric PHA synthase possesses desirable substrate specificity leading to the production of 3HB-rich copolymers.  相似文献   
39.
In this study, we investigated the effects of Korean red ginseng water extract (KRGE) on hepatic lipid accumulation in HepG2 cells. KRGE decreased hepatic triglyceride and cholesterol levels. Further, KRGE suppressed expression of fatty acid synthase (FAS) and 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase. These results suggest that KRGE may reduce hepatic lipid accumulation by inhibition of FAS and HMG-CoA reductase expression in HepG2 cells.  相似文献   
40.
Three Lactobacillus casei bacteriophages, LC-Nu, PL-1, and ?FSW, were compared. Phage LC-Nu, which has not been previously characterized, originated from a local cheese plant in Finland. Phages PL-1 and ?FSW (isolated in Japan) represent the most thoroughly studied L.casei phages so far. All three phages had similar morphotypes, but still had different patterns of structural proteins, as analyzed by SDS-PAGE. The phages differed also in types of genome organization: LC-Nu and PL-1 had cohesive ends in their DNAs, and the DNA of ?FSW was circularly permuted. The initiation site and orientation of packaging of ?FSW DNA were identified. The homologies between the phage genomes were analyzed by Southern hybridization. About one-third of each phage gem me was highly homologous with other phages (homology over 85%), and two-thirds were slightly homologous (homology between 65% and 76%). DNAs from five industrial L. casei strains were also tested for homology with phage LC-Nu DNA. Phage LC-Nu related sequences were present in all the L. casei strains tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号