首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43744篇
  免费   17342篇
  国内免费   61篇
  61147篇
  2024年   3篇
  2023年   41篇
  2022年   48篇
  2021年   488篇
  2020年   2824篇
  2019年   4345篇
  2018年   4624篇
  2017年   4596篇
  2016年   4295篇
  2015年   4157篇
  2014年   4077篇
  2013年   4440篇
  2012年   3828篇
  2011年   4007篇
  2010年   3491篇
  2009年   2326篇
  2008年   2482篇
  2007年   1901篇
  2006年   1922篇
  2005年   1603篇
  2004年   1266篇
  2003年   1370篇
  2002年   1167篇
  2001年   878篇
  2000年   427篇
  1999年   274篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   27篇
  1994年   19篇
  1993年   27篇
  1992年   23篇
  1991年   11篇
  1990年   5篇
  1989年   10篇
  1988年   13篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1983年   1篇
  1982年   9篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   8篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3H deficiency on the structure and properties of grass cell walls. C3H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3H‐suppressed rice displays enhanced biomass saccharification.  相似文献   
172.
Abstract: The supposed vestige of a cephalopod gladius from Turonian platy limestones at Vallecillo, north‐east Mexico, named Palaeoctopus pelagicus by Fuchs et al. in 2008, is reinterpreted and shown to be a gular plate of a coelacanth fish, possibly of the genus Megacoelacanthus. In addition to the gular plate, two extrascapulars and fin rays of all fins are preserved on one slab and its counterpart. This is the first record of a coelacanth from these lower Turonian strata at Vallecillo, which are rich in fish.  相似文献   
173.
174.
A salt‐tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p‐nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three‐dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat‐resistant features. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:890–899, 2015  相似文献   
175.
The production of waste creates both direct and indirect environmental impacts. A range of strategies are available to reduce the generation of waste by industry and households, and to select waste treatment approaches that minimize environmental harm. However, evaluating these strategies requires reliable and detailed data on waste production and treatment. Unfortunately, published Australian waste data are typically highly aggregated, published by a variety of entities in different formats, and do not form a complete time‐series. We demonstrate a technique for constructing a multi‐regional waste supply‐use (MRWSU) framework for Australia using information from numerous waste data sources. This is the first MRWSU framework to be constructed (to the authors' knowledge) and the first sub‐national waste input‐output framework to be constructed for Australia. We construct the framework using the Industrial Ecology Virtual Laboratory (IELab), a cloud‐hosted computational platform for building Australian multi‐regional input‐output tables. The structure of the framework complies with the System of Environmental‐Economic Accounting (SEEA). We demonstrate the use of the MRWSU framework by calculating waste footprints that enumerate the full supply chain waste production for Australian consumers.  相似文献   
176.
Aggressive treatment with high‐dose atorvastatin reduces more effectively the incidence of cardiovascular events than moderate statin therapy. The mechanism of this benefit has not been fully elucidated. In order to know the potential effects of statin treatment on the protein expression of circulating monocytes in acute coronary syndrome (ACS) patients, a proteomic analysis of these cells was carried out by 2‐DE and MS. Twenty‐five patients with non‐ST‐elevation acute coronary syndrome (NSTEACS) were randomized, the fourth day after admission, to receive ATV 80 mg/dL (n = 14) or conventional treatment (CT) (n = 11), for two months. Blood was withdrawn at the end of the treatment, and monocytes were extracted for proteomic analysis and their protein expression patterns determined. Age, sex, total cholesterol, LDL, HDL, triglycerides, body mass index, presence of hypertension, diabetes, and smoking status were not significantly different between the two groups of patients. The expression of 20 proteins was modified by intensive ATV. Among the most relevant results stand out the normalization by intensive ATV treatment of the expression of proteins that modulate inflammation and thrombosis such as protein disulfide isomerase ER60 (PDI), Annexin I, and prohibitin, or that have other protective effects as HSP‐70. Thus, this approach shed light at the molecular level of the beneficial mechanisms of anti‐atherothrombotic drugs.  相似文献   
177.
178.
Species–area curves from islands and other isolates often differ in shape from sample‐area curves generated from mainlands or sections of isolates (or islands), especially at finer scales. We examine two explanations for this difference: (1) the small‐island effect (SIE), which assumes the species–area curve is composed of two distinctly different curve patterns; and (2) a sigmoid or depressed isolate species–area curve with no break‐points (in arithmetic space). We argue that the application of Ockham’s razor – the principle that the simplest, most economical explanation for a hypothesis should be accepted over less parsimonious alternatives – leads to the conclusion that the latter explanation is preferable. We hold that there is no reason to assume the ecological factors or patterns that affect the shapes of isolate (or island) curves cause two distinctly different patterns. This assumption is not required for the alternative, namely that these factors cause a single (though depressed) isolate species–area curve with no break‐points. We conclude that the theory of the small‐island effect, despite its present standing as an accepted general pattern in nature, should be abandoned.  相似文献   
179.
The discovery of novel anticancer molecules 5F‐203 (NSC703786) and 5‐aminoflavone (5‐AMF, NSC686288) has addressed the issues of toxicity and reduced efficacy by targeting over expressed Cytochrome P450 1A1 (CYP1A1) in cancer cells. CYP1A1 metabolizes these compounds into their reactive metabolites, which are proven to mediate their anticancer effect through DNA adduct formation. However, the drug metabolite–DNA binding has not been explored so far. Hence, understanding the binding characteristics and molecular recognition for drug metabolites with DNA is of practical and fundamental interest. The present study is aimed to model binding preference shown by reactive metabolites of 5F‐203 and 5‐AMF with DNA in forming DNA adducts. To perform this, three different DNA crystal structures covering sequence diversity were selected, and 12 DNA‐reactive metabolite complexes were generated. Molecular dynamics simulations for all complexes were performed using AMBER 11 software after development of protocol for DNA‐reactive metabolite system. Furthermore, the MM‐PBSA/GBSA energy calculation, per‐nucleotide energy decomposition, and Molecular Electrostatic Surface Potential analysis were performed. The results obtained from present study clearly indicate that minor groove in DNA is preferable for binding of reactive metabolites of anticancer compounds. The binding preferences shown by reactive metabolites were also governed by specific nucleotide sequence and distribution of electrostatic charges in major and minor groove of DNA structure. Overall, our study provides useful insights into the initial step of mechanism of reactive metabolite binding to the DNA and the guidelines for designing of sequence specific DNA interacting anticancer agents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
180.
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr?1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr?1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号