首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97394篇
  免费   4473篇
  国内免费   8231篇
  2023年   891篇
  2022年   1425篇
  2021年   1841篇
  2020年   1997篇
  2019年   3351篇
  2018年   2388篇
  2017年   1987篇
  2016年   2400篇
  2015年   3581篇
  2014年   4832篇
  2013年   6630篇
  2012年   4080篇
  2011年   5501篇
  2010年   4141篇
  2009年   4283篇
  2008年   4613篇
  2007年   4891篇
  2006年   4433篇
  2005年   3904篇
  2004年   3299篇
  2003年   2954篇
  2002年   2599篇
  2001年   2094篇
  2000年   1866篇
  1999年   1843篇
  1998年   1715篇
  1997年   1495篇
  1996年   1341篇
  1995年   1613篇
  1994年   1486篇
  1993年   1429篇
  1992年   1436篇
  1991年   1213篇
  1990年   1120篇
  1989年   1097篇
  1988年   1092篇
  1987年   1044篇
  1986年   729篇
  1985年   1219篇
  1984年   1667篇
  1983年   1174篇
  1982年   1561篇
  1981年   1127篇
  1980年   1089篇
  1979年   1021篇
  1978年   586篇
  1977年   478篇
  1976年   390篇
  1975年   278篇
  1973年   283篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
21.
Chick embryo fibroblasts were treated with the monofunctional alkylating agent methylmethane sulfonate at various concentrations for 1 h at 42°C, rinsed and then incubated post-treatment at various temperatures at which the kinetics of alkali-labile bond disappearance was followed. Growth experiments showed that these cells grew similarly at temperatures of either 37°C or 42°C. Repair as assessed by removal of alkali-labile bond was also similar for postincubation in the temperature range 37–42°C for damage due to methylmethane sulfonate treatment at concentrations less than 1.5 mM. When the postincubation temperature was raised higher than 42.5–43°C, this type of repair was stopped. The normal internal body temperature of adult chickens is about 41.6°C. Hence the present finding indicates that chick cells are much more severely restricted in DNA repair at temperatures above normal than are mammalian cells, which can function in this respect for several deg. C above 37°C.  相似文献   
22.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   
23.
The corixid species breeding in temporary rock pools of Baltic archipelago live in a highly fragmented and unpredictable habitat. Shallow rock pools can dry out and be refilled repeatedly during a summer causing high mortality of immatures. In deeper pools, young nymphs face intense competition by older stages including cannibalism. The adult corixids move frequently between rock pools and are thus able to use currently available habitat for reproduction. In this dispersal behaviour, the ability to assess the local population density and hence select the more suitable low density patches would be advantageous. We studied the effect of local population density on the frequency of dispersive flights of Arctocorisa carinata (Sahlberg) and Callicorixa producta (Reuter) experimentally, using rock pools from which nymphs of both species were removed. The dispersal rates of marked C. producta adults were significantly lower from experimental rock pools than from normal density controls, leading to a concentration of C. producta adults in the experimental rock pools. Indications of immigration rate differences between the experimental and control pools were also observed. No clear differences were found in the superior competitor A. carinata.  相似文献   
24.
25.
Several unit-length minicircles from the kinetoplast DNA of Leishmania tarentolae were cloned into pBR322 and into M13 phage vectors. The complete nucleotide sequences of three different partially homologous minicircles were obtained. The molecules contained a region of approx. 80% sequence homology extending for 160–270 bp and a region unique to each minicircle. A 14-mer was found to be conserved in all kinetoplast minicircle sequences reported to date. The frequency distributions of various minicircle sequence classes in L. tarentolae were obtained by quantitative gel electrophoresis and by examination of the “T ladder” patterns of minicircles randomly cloned into M13 at several sites. By these methods we could assign approx. 50% of the total minicircle DNA into a minimum of five sequence classes. A sequence-dependent polyacrylamide gel migration abnormality was observed with several minicircle fragments both cloned and uncloned. The abnormality was dependent on the presence of a portion of the conserved region of the minicircle.  相似文献   
26.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
27.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
28.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
29.
Primary cell cultures were prepared from breast muscles of 11 day 4 hour-embryonic chicks. Cytoplasmic RNAs were isolated from the cultured cells at various time intervals from day 3 to day 8. A [P32] DNA probe complementary to messenger RNA of myosin heavy chain was used to hybridize with the RNAs after gel electrophoresis. A transient species of polyadenylated RNA with a decreased mobility in electrophoresis was detected during a period of time when contractions of syncytial fibers were first observed.  相似文献   
30.
Kinetic parameters of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea (DCMU)-induced inhibition of electron transport in chloroplast thylakoids isolated from Phaseolus vulgaris L. cv. Oregon 1604 were determined from analysis of a convergent, parallel electrical circuit. Through this analogue, the apparent affinity of the purported binding site for DCMU (K1) and the relative amount of DCMU-insensitive electron transport (vmax1/vo) were obtained using a reiterative non-linear least squares curve-fitting procedure. Exposure of thylakoids to heat caused a gradual increase in K1 (or decrease in the affinity of the thylakoid for DCMU) with an apparent activation energy of 134 kJ mol−1. Tryptic susceptibility of a protein region regulating K1 also decreased gradually with exposure to 45°C, suggesting that the heat-induced increase in K1 might be due to a protein conformational change. On the other hand, thylakoid exposure to 45°C resulted in a rapid (<5 min) irreversible increase in vmaxI/vo, which was also the apparent result of a conformational change in a region of the protein which regulates this function. These results are suggestive of the existence of differential thermal sensitivities of proteins within the thylakoids and, perhaps, of different regions within a single membrane protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号