首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6946篇
  免费   565篇
  国内免费   347篇
  7858篇
  2024年   10篇
  2023年   105篇
  2022年   95篇
  2021年   158篇
  2020年   194篇
  2019年   225篇
  2018年   219篇
  2017年   167篇
  2016年   262篇
  2015年   226篇
  2014年   289篇
  2013年   464篇
  2012年   268篇
  2011年   261篇
  2010年   286篇
  2009年   295篇
  2008年   382篇
  2007年   353篇
  2006年   326篇
  2005年   312篇
  2004年   351篇
  2003年   310篇
  2002年   303篇
  2001年   248篇
  2000年   259篇
  1999年   219篇
  1998年   217篇
  1997年   166篇
  1996年   133篇
  1995年   105篇
  1994年   98篇
  1993年   96篇
  1992年   65篇
  1991年   64篇
  1990年   53篇
  1989年   37篇
  1988年   26篇
  1987年   34篇
  1986年   18篇
  1985年   23篇
  1984年   24篇
  1983年   12篇
  1982年   19篇
  1981年   13篇
  1980年   7篇
  1979年   14篇
  1978年   12篇
  1977年   13篇
  1976年   8篇
  1975年   7篇
排序方式: 共有7858条查询结果,搜索用时 15 毫秒
21.
A systematic investigation of the genus Sphaeroplea was conducted using cladistic analyses of both structural and isozyme characters for the same set of taxa. The structural data were not able to fully resolve some of the taxa while the isozyme data did produce a tree in which all nodes were supported by data. The structural characters were relatively consistent with one another, whereas the isozyme characters were much less internally consistent. Results from independent, cladistic analyses of both data sets support the concept that among those Sphaeroplea species investigated, S. fragilis Buchheim et Hoffman had an early divergence. The two data sets differed primarily in that the structural data support monophyly of the genus Sphaeroplea and the isozyme data do not. The greater relative consistency of the structural data suggests better support for trees inferred from its analysis. Furthermore, searches for character congruence between the two data sets revealed isozyme data which support monophyly of the genus Sphaeroplea, but had been overwhelmed by conflicting isozyme characters.  相似文献   
22.
23.
Variation in the mitochondrial cytochrome b gene (nucleotide and amino acid sequences) is evaluated for 9 genera and 15 species of American opossums in the family Didelphidae, using the American caenolestid rat opossumLestoros and the New Guinean peroryctid bandicootEchimypera as outgroups. Phylogenetic analyses (parsimony and distance) strongly support the monophyly of the Didelphidae and delineate two major clades; (1)Didelphis andPhilander are strongly aligned sister taxa, withMetachirus weakly but consistently associated with them, and (2)Marmosa plusMicoureus, withMonodelphis falling outside that pair. The generaMarmosops, Caluromys, andGlironia exhibit varied relationships, depending upon the method of analysis and data (DNA or amino acid sequences) used, but generally are placed individually or in combinations near or at the base of the didelphid radiation. Some aspects of these relationships are consistent with current taxonomic views, but others are in marked contrast. Specifically, a clade comprised of the mouse opossumsMarmosa, Micoureus, andMarmosops is strongly rejected by log-likelihood analysis, contrary to expectations from some current classifications. Also, the woolly opossumsCaluromys andGlironia also do not form a sister-taxon relationship, as suggested by their placement in a subfamily separate from the remaining didelphids examined. However, such a relationship cannot be rejected from log-likelihood analyses. The relationships suggested fromcyt-b sequences are strongly concordant with those based on DNA-DNA hybridization analyses. In addition to systematic and phylogenetic properties, molecular evolution of the didelphid cytochrome b gene sequence is characterized according to nucleotide bias and rate differentials at each codon position and across the entire sequence.To whom correspondence should be addressed.  相似文献   
24.
The complete nucleotide sequence of the mitochondrial DNA of the rainbow trout, Onchorynchus mykiss, has been determined. The total length of the molecule is 16,660 bp. The rainbow trout mitochondrial DNA has the same organization described in eutherian mammals, the clawed frog (Xenopus laevis), and the two fish species, Oriental stream loach (Crossotoma lacustre) and carp (Cyprinus carpio). Alignment and comparison of the deduced amino acid sequences of the 13 proteins encoded by rainbow trout and other vertebrate mitochondrial genomes allowed us to estimate that COI is the most conserved mitochondrial subunit (amino acid identity ranging from 85.6% to 94.8%) whereas ATPase 8 is the most variable one (amino acid identity ranging from 30.8% to 70.4%). Putative secondary structures for the 22 tRNAs found in the molecule are given along with an extensive comparison of tRNA sequences among representative species of each major group of vertebrates. In this sense, an unusual cloverleaf structure for the tRNASer(AGY) is proposed. A stem-loop structure inferred for the origin of the L-strand replication (OL) and the presence of a large polycytidine tract in the OL loop is described. The existence of this stretch instead of the usual T-rich sequence reported so far in mammal mtDNAs is explained in terms of a less-strict template dependence of the RNA primase involved in the initiation of L-strand replication. Correspondence to: J.M. Bautista  相似文献   
25.
We hypothesize that the evolution of an ecologically important character, the host associations of specialized phytophagous insects, has been influenced by limitations on genetic variation. Using as a historical framework a phylogenetic reconstruction of the history of host associations in the beetle genus Ophraella (Chrysomelidae), we have employed quantitative-genetic methods to screen four species for genetic variation in larval survival, oviposition (in one species only), and feeding responses to their congeners' host plants, in the Asteraceae. We here report results of studies of one species and evaluate the results from all four. Analysis of half-sib/full-sib families and of progenies of wild females of O. notulata, a specialist on Iva (Ambrosiinae), provided evidence of genetic variation in larval consumption of five of six test plants and in adult consumption of four of six. Larval mortality was complete on five plants; only on Ambrosia, a close relative of the natural host, was there appreciable, and genetically variable, survival. Oviposition on Ambrosia showed marginally significant evidence of genetic variation; a more distantly related plant elicited no oviposition at all. In compiling results from four Ophraella species, reported in this and two other papers, we found no evidence of genetic variation in 18 of 39 tests of feeding responses and 14 of 16 tests of larval survival on congeners' hosts. This result is consistent with the hypothesis that absence or paucity of genetic variation may constrain or at least bias the evolution of host associations. The lower incidence of genetic variation in survival than in feeding behavior may imply, according to recent models, that avoidance is a more common evolutionary response to novel plants than adaptation. The usually great disparity between mean performance on congeners' hosts and the species' natural hosts, and an almost complete lack of evidence for negative genetic correlations, argue against the likelihood that speciation has occurred by sympatric host shift. The presence versus apparent absence of genetic variation in consumption was correlated with the propinquity of relationship between the beetle species tested and the species that normally feeds on the test plant, suggesting that the history of host shifts in Ophraella has been guided in part by restrictions on genetic variation. It was also correlated with the propinquity of relationship between a test plant and the beetle's natural host. The contributions of plant relationships and insect relationships, themselves correlated in part, to the pattern of genetic variation, are not readily distinguishable, but together accord with phylogenetic evidence that these and other phytophagous insects adapt most readily to related plants. In this instance, therefore, the macroevolution of an ecologically important character appears to have been influenced by genetic constraints. We hypothesize that absence of the structural prerequisites for genetic variation in complex characters may affect genetic variation and the trajectory of evolution.  相似文献   
26.
Geoffrey Fryer 《Hydrobiologia》1995,307(1-3):57-68
The distinctness of the Anomopoda and the polyphyletic nature of the so-called Cladocera are emphasized.An attempt is made to reconstruct the ancestral anomopod, which probably lived in Palaeozoic times. This task is facilitated by the availability of detailed information on extant forms, which includes functional as well as purely morphological considerations and enables us to understand the means whereby complex mechanisms were transformed during evolution. Comparative studies on the ecology and habits of extant forms also throw light on the probable way of life of the ancestral anomopod.Adaptive radiation within the Anomopoda is briefly surveyed and an outline of the suggested phylogeny of the order is indicated.Institute of Environmental and Biological Sciences, University of Lancaster  相似文献   
27.
Gene frequencies at 13 isozyme loci were determined in three South American taxa of cultivated potatoes [the diploid group (gp.) Stenotomum, the diploid subgroups (subgp.) Goniocalyx, and the tetraploid gp. Andigena ofS. tuberosum], in the diploid weed speciesS. sparsipilum, and in most of the main cultivars now raised in the Northern Hemisphere (the tetraploid gp. Tuberosum ofS. tuberosum). High levels of genetic variability (mean number of alleles per locus, percentage of polymorphic loci, and mean heterozygosity) were detected, being higher in tetraploid potatoes. An equilibrium among the evolutionary factors which increase genetic variability and artificial selection for maximum yield would explain the high uniformity of heterozygosity values we observed in both Andigena (0.36 ± 0.02) and Tuberosum (0.38 ± 0.01) cultivars.—The low value of genetic distance (D = 0.044) between Stenotomum and Goniocalyx does not support the status of species forS. goniocalyx.—In most isozyme loci, the electromorphs of gp. Andigena were a combination of those found in both gp. Stenotomum andS. sparsipilum, suggesting an amphidiploid origin of gp. Andigena from that two diploid taxa. The presence in Andigena of unique electromorphs, which were lacking in both gp. Stenotomum andS. sparsipilum, suggests that other diploid species could be also implied in the origin of tetraploid Andean potatoes. Furthermore, since Andigena were more related to Stenotomum (D = 0.052) than toS. sparsipilum (D = 0.241), the autopolyploidization of Stenotomum individuals and the subsequent hybridization with gp. Andigena may also have occurred. Thus, our study suggests a multiple origin (amphidiploidy, autoploidy, and hybridization at tetraploid level) of gp. Andigena.—Most of the electromorphs of gp. Tuberosum were also found in gp. Andigena; both the direct derivation of that group from the Andean tetraploid potatoes and the repeated introgression provided by breeding programmes could explain this result. However, the allele c of Pgm-B, present in 30 out of 76 Tuberosum cultivars from Northern Hemisphere as well as in 3 Chilean Tuberosum cultivars, lacks in the 258 Andigena genotypes sampled, suggesting that Chilean germplasm could have taken part in the origin of at least the 39% of the potato cultivars from Europe and North America analyzed here.—The distanceWagner procedure provides an estimate of a 30% of heterogeneity in the evolutionary divergence shown by different groups of cultivated potatoes. Diploid groups show a higher (22.5%) evolutionary rate than tetraploids, which can be attributed to both tetrasomic inheritance and facultative autofecundation that exists in Andigena and Tuberosum groups. Thus, artificial selection acting since 10000 years has not resulted in a higher rate of molecular evolution at the isozyme level in the tetraploids.  相似文献   
28.
The remarkable diversity of fruits inValerianella andFedia is revealed by a comparative morphological and anatomical analysis. Characters are evaluated in regard to a new systematic grouping. The knowledge on dispersal biology is summarized and supplemented. Finally, salient features of fruit differentiation are discussed.
3. Teil der Publikationsserie Beiträge zur Systematik und Evolution vonValerianella undFedia (Valerianaceae) (vgl.Ernet 1977a, b).  相似文献   
29.
30.
Genetic distances (D's) between five species within each of the families Mimidae and Vireonidae were estimated from frequencies of protein electromorphs at 23 loci. For three mimid species in the genus Toxostoma, equals 0.084 (range, 0.069–0.104); and among three mimid genera, equals 0.223 (0.167–0.278). These distances typify values previously reported in other birds at comparable levels of taxonomic recognition. In sharp contrast, the mean genetic distance among five congeneric species of Vireonidae is far higher, =0.360 (0.027–0.578). One possible explanation for these results is that Vireo species are considerably older, on the average, than are species of Toxostoma or than are members of several other avian genera assayed to date. Conventional thought about the origin and relative age of the Vireonidae appears compatible with this explanation. Although genetic distances in the Vireonidae are large by avian standards, they remain modest or even small in comparison with distances between many nonavian vertebrate congeners. Results for the Mimidae and the Vireonidae are directly contrasted with genetic distances in well-known genera of Amphibia and Reptilia.This research was supported by NSF Grant DEB 7814195 and by a grant from the American Philosophical Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号