首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   36篇
  国内免费   21篇
  2023年   3篇
  2022年   30篇
  2021年   17篇
  2020年   25篇
  2019年   31篇
  2018年   29篇
  2017年   24篇
  2016年   30篇
  2015年   60篇
  2014年   134篇
  2013年   89篇
  2012年   141篇
  2011年   122篇
  2010年   82篇
  2009年   103篇
  2008年   82篇
  2007年   76篇
  2006年   68篇
  2005年   58篇
  2004年   69篇
  2003年   36篇
  2002年   23篇
  2001年   3篇
  2000年   1篇
排序方式: 共有1336条查询结果,搜索用时 31 毫秒
81.
We have always wanted to save the world from the scourges of virus infection by developing better drugs and vaccines. But fully understanding the intricacies of virus–host interactions, the first step in achieving this goal, requires the ability to view the process on a grand scale. The advent of high-throughput technologies, such as DNA microarrays and mass spectrometry, provided the first opportunities to obtain such a view. Here, we describe our efforts to use these tools to focus on the changes in cellular gene expression and protein abundance that occur in response to virus infection. By examining these changes in a comprehensive manner, we have been able to discover exciting new insights into innate immunity, interferon and cytokine signaling, and the strategies used by viruses to overcome these cellular defenses. Functional genomics may yet save the world from killer viruses.  相似文献   
82.
Antidepressant-related protein (NDRG2) is a member of the N-myc downstream-regulated gene family and a role for differentiation and signaling has been proposed. Performing protein profiling we observed NDRG2 and decided to characterize this important biomolecule. Estrous cycle phases were determined in Sprague-Dawley rats and the hippocampus was taken. Proteins were extracted, run on two-dimensional gel electrophoresis with subsequent multi-enzyme digestion followed by MALDI-TOF-TOF and nano-LC-ESI-MS/MS analysis of spots. Spots identified as NDRG2 were quantified by specific software. Five spots were identified as NDRG2 and two novel phosphorylation sites (T330 and T334) were detected. Gender and estrous cycle-dependent NDRG2 levels were observed. Results are of importance for further qualitative and quantitative studies at the protein level as well as for the design of antibodies for immunochemical applications and for the interpretation of previous studies on NDRG2 that did not take into account different expression forms and posttranslational modifications.  相似文献   
83.
Renal ischemia/reperfusion (I/R) injury often occurs as a result of vascular surgery, organ procurement, or transplantation. We previously showed that renal I/R results in ATP depletion, oxidant production, and manganese superoxide dismutase (MnSOD) inactivation. There have been several reports that overexpression of MnSOD protects tissues/organs from I/R-related damage, thus a loss of MnSOD activity during I/R likely contributes to tissue injury. The present study examined the therapeutic benefit of a catalytic antioxidant, Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), using the rat renal I/R model. This was the first study to examine the effects of MnTnHex-2-PyP(5+) in an animal model of oxidative stress injury. Our results showed that porphyrin pretreatment of rats for 24 h protected against ATP depletion, MnSOD inactivation, nitrotyrosine formation, and renal dysfunction. The dose (50 microg/kg) used in this study is lower than doses of various types of antioxidants commonly used in animal models of oxidative stress injuries. In addition, using novel proteomic techniques, we identified the ATP synthase-beta subunit as a key protein induced by MnTnHex-2-PyP(5+) treatment alone and complex V (ATP synthase) as a target of injury during renal I/R. These results showed that MnTnHex-2-PyP(5+) protected against renal I/R injury via induction of key mitochondrial proteins that may be capable of blunting oxidative injury.  相似文献   
84.
Global expression profiling of mammalian cells used for the production of biopharmaceuticals will allow greater insights into the molecular mechanisms that result in a high producing cellular phenotype. These studies may give insights for genetic intervention to possibly create better host cell lines or even to provide clues to more rational strategies for cell line and process development. In this review I will focus on the contribution of proteomic technologies to a greater understanding of the biology of Chinese hamster ovary cells and other producing cell lines such as NS0 mouse cells.  相似文献   
85.
The proof of efficacy of phytopreparations and the determination of their mode of action are permanent challenges for an evidence-based phytotherapy. The technology platform of genomics, proteomics and metabolomics ("-omic-" technologies) are high-throughput technologies. They increase substantially the number of proteins/genes that can be detected simultaneously and have the potential to relate complex mixtures to complex effects in the form of gene/protein expression profiles. Provided that phytopreparation-specific signatures in the form of gene/protein expression profiles can be developed, these technologies will be useful for the chemical and pharmacological standardization and the proof of the toxicological potential of a plant extract. Over a long-term perspective they may economize the proof of efficacy, the determination of the mode of action of phytomedicines and allow to investigate herbal extracts without prominent active principle(s). The application of this genomics revealed already that gene expression profiles induced by single drugs and the ones induced by the combination of the same drugs can be entirely different. These results make the information of the mode of action of isolated "active principles/lead substances" of phytopreparations questionable. The application of the "-omic-" technologies may lead to a change of paradigms towards the application of complex mixtures in medicine and open the new field of phytogenomics, -proteomics and -metabolomics.  相似文献   
86.
Schistosomiasis is a globally important helminthic disease of both humans and animals, and is the second most common parasitic disease after malaria. Although praziquantel is extensively used for treatment of parasitic diseases, drug resistance has been reported. Therefore, new drugs and effective vaccines are needed for continuous control of schistosomiasis. Eggs produced by schistosomes are responsible for the occurrence and spread of schistosomiasis. Revealing the reproductive mechanism of schistosomes will help to control this disease. In this study, the proteomic profiles of single-sex infected female worms and bisexual infected mature female worms of Schistosoma japonicum at 18, 21, 23 and 25 days p.i. were identified with isobaric tags for relative quantitation-coupled liquid chromatography–tandem mass spectrometry. Differentially expressed proteins were subsequently used for bioinformatic analysis. Six highly expressed differentially expressed proteins in mature female worms were selected and long-term interference with small interfering RNA (siRNA) was conducted to determine biological functions. SiRNA against S. japonicum translationally controlled tumour protein (SjTCTP) resulted in the most significant effect on the growth and development of MF worms. Sjtctp mRNA expression gradually increased over time with a high level of expression maintained at 25–42 days p.i., while levels were significantly higher in mature female worms than male and SF worms. The subsequent animal immune protection experiments showed that recombinant SjTCTP (rSjTCTP) reduced the number of adults by 44.7% (P < 0.01), average egg burden per gram of liver by 57.94% (P < 0.01), egg hatching rate by 47.57% (P < 0.01), and oviposition of individual females by 43.16%. rSjTCTP induced higher levels of serum IgG, IL-2, and IL-10 in mice. Collectively, these results show that SjTCTP is vital to reproduction of female worms and, thus, is a candidate antigen for immune protection.  相似文献   
87.
88.
Extracellular vesicles (EVs) participate in cell-stroma crosstalk within the tumor microenvironment and fibroblasts (Fb) contribute to tumor promotion in thyroid cancer. However, the role of tumor-stroma derived EVs still needs to be deciphered. We hypothesized that the interaction of thyroid tumor cells with Fb would liberate EVs with a specific proteomic profile, which would have an impact on EV-functionality in thyroid tumor progression-related events. Tumor (TPC-1, 8505c) and non-tumor (NThyOri) thyroid cells were co-cultured with human Fb. EVs, obtained by ultracentrifugation of conditioned media, were characterized by nanoparticle tracking analysis and western blotting. EV-proteomic analysis was performed by mass-spectrometry, and metalloproteinases (MMPs) were studied by zymography. EV-exchange was evaluated using immunofluorescence, confocal microscopy and FACS. EVs expressed classical exosome markers, with EVs from thyroid tumor cell-Fb co-cultures showing a proteomic profile related to extracellular matrix (ECM) remodeling. Bidirectional crosstalk between Fb and TPC-1 cells produced significantly more EVs than their isolated cells, and potentiated EV-functionality. In line with this, Fb-TPC-1 derived EVs induced MMP2 activation in NThyOri supernatants, and MMP2 activity could be evidenced in Fb and TPC-1 contact-independent co-cultures. Besides, MMP2 interactors allowed us to discriminate between EVs from thyroid tumoral and non-tumoral milieus. Interestingly, Fb internalized more EVs from TPC-1 than from NThyOri producing cells. Fb and thyroid tumor cell crosstalk produces specialized EVs with an ECM remodeling proteomic profile, enabling activation of MMP2 and possibly facilitating ECM-degradation, which is potentially linked with thyroid tumor progression.  相似文献   
89.
90.
Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5 M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号