首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  国内免费   1篇
  102篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   3篇
  1988年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
21.
Myocardial infarction (MI) is followed by extracellular matrix (ECM) remodeling, which is on the one hand required for the healing response and the formation of stable scar tissue. However, on the other hand, ECM remodeling can lead to fibrosis and decreased ventricular compliance. The small leucine-rich proteoglycan (SLRP), biglycan (bgn), has been shown to be critically involved in these processes. During post-infarct remodeling cardiac fibroblasts differentiate into myofibroblasts which are the main cell type mediating ECM remodeling. The aim of the present study was to characterize the role of bgn in modulating the phenotype of cardiac fibroblasts. Cardiac fibroblasts were isolated from hearts of wild-type (WT) versus bgn(-/0) mice. Phenotypic characterization of the bgn(-/0) fibroblasts revealed increased proliferation. Importantly, this phenotype of bgn(-/0) fibroblasts was abolished to the WT level by reconstitution of biglycan in the ECM. TGF-β receptor II expression and phosphorylation of SMAD2 were increased. Furthermore, indicative of a myofibroblast phenotype bgn(-/0) fibroblasts were characterized by increased α-smooth muscle actin (α-SMA) incorporated into stress fibers, increased formation of focal adhesions, and increased contraction of collagen gels. Administration of neutralizing antibodies to TGF-β reversed the pro-proliferative, myofibroblastic phenotype. In vivo post-MI α-SMA, TGF-β receptor II expression, and SMAD2 phosphorylation were markedly increased in bgn(-/0) mice. Collectively, the data suggest that bgn deficiency promotes myofibroblast differentiation and proliferation in vitro and in vivo likely due to increased responses to TGF-β and SMAD2 signaling.  相似文献   
22.
Mechanisms of astrocyte-directed neurite guidance   总被引:5,自引:0,他引:5  
Astrocytes have recently become better recognized as playing vital roles in regulating the patterning of central nervous system neurites during development and following injury. In general, astrocytes have been shown to be supportive of neurite extension, but alterations in the biochemical properties of astrocytes in particular areas during development and in gliotic tissue may act to confine neurite outgrowth and thus provide guidance cues. In vivo studies indicate that restrictive astrocytes function through their altered expression of specific extracellular matrix molecules, including tenascin, chondroitin, and keratan sulfate proteoglycans. In addition, several in vitro models suggest that other cell surface molecules are utilized by restrictive astrocytes to direct neurite trajectories. Received: 5 May 1997 / Accepted: 6 June 1997  相似文献   
23.
In embryos of the white mutant axolotl, prospective pigment cells are unable to migrate from the neural crest (NC) due to a deficiency in the subepidermal extracellular matrix (ECM). This raises the question of the molecular nature of this functional defect. Some PGs can inhibit cell migration on ECM molecules in vitro, and an excess of this class of molecules in the migratory pathways of neural crest cells might cause the restricted migration of prospective pigment cells seen in the white mutant embryo. In the present study, we use several monoclonal antibodies against epitopes on keratan sulphate (KS) and chondroitin sulphate (CS) and LM immunofluorescence to examine the distribution of these glycosaminoglycans at initial (stage 30) and advanced (stage 35) stages of neural crest cell migration. Most KS epitopes are more widely distributed in the white mutant than in the wild type embryo, whereas CS epitopes show very similar distributions in mutant and wild type embryos. This is confirmed quantitatively by immunoblotting: certain KS epitopes are more abundant in the white mutant. TEM immunogold staining reveals that KS as well as CS are present both in the basal lamina and in the interstitial ECM in both types of embryos. It remains to be investigated whether the abundance of certain KS epitopes in the white mutant embryo might contribute to the deficiency in supporting pigment cell migration shown by its ECM.  相似文献   
24.
Long-term cultures of somatic testicular cells derived from immature and pubertal rats were used to study the synthesis of proteoglycans (PG) and hyaluronic acid (HA). Labelled PG and HA in the culture medium, membrane-associated and intracellular pools were characterized by gel filtration, ion exchange chromatography and selected enzymatic and chemical treatments. Somatic cells synthesize a PG containing both heparan and chondroitin/dermatan sulfate (CS/DS) chains and a PG containing only CS/DS chains. No major qualitative changes in the type of PG were observed in cells derived from immature and pubertal animals. However, significant age-dependent differences in the cell distribution pattern of PG and HA were determined. This may have implications in the regulation of spermatogenesis.  相似文献   
25.
Heparan sulfate proteoglycans are critical binding partners for extracellular tranglutaminase-2 (TG2), a multifunctional protein involved in tissue remodeling events related to organ fibrosis and cancer progression. We previously showed that TG2 has a strong affinity for heparan sulfate (HS)/heparin and reported that the heparan sulfate proteoglycan syndecan-4 acts as a receptor for TG2 via its HS chains in two ways: by increasing TG2-cell surface trafficking/externalization and by mediating RGD-independent cell adhesion to fibronectin-TG2 matrix during wound healing. Here we have investigated the molecular basis of this interaction. Site-directed mutagenesis revealed that either mutation of basic RRWK (262-265) or KQKRK (598-602) clusters, forming accessible heparin binding sequences on the TG2 three-dimensional structure, led to an almost complete reduction of heparin binding, indicating that both clusters contribute to form a single binding surface. Mutation of residues Arg(19) and Arg(28) also led to a significant reduction in heparin binding, suggesting their involvement. Our findings indicate that the heparin binding sites on TG2 mainly comprise two clusters of basic amino acids, which are distant in the linear sequence but brought into spatial proximity in the folded "closed" protein, forming a high affinity heparin binding site. Molecular modeling showed that the identified site can make contact with a single heparin-derived pentasaccharide. The TG2-heparin binding mutants supported only weak RGD-independent cell adhesion compared with wild type TG2 or mutants with retained heparin binding, and both heparin binding clusters were critical for TG2-mediated cell adhesion. These findings significantly advance our knowledge of how HS/heparin influences the adhesive function of TG2.  相似文献   
26.
Glypican-3 (Gpc3) is a heparan sulfate proteoglycan (HSPG) expressed widely during vertebrate development. Loss-of-function mutations cause Simpson-Golabi-Behmel syndrome (SGBS), a rare and complex congenital overgrowth syndrome with a number of associated developmental abnormalities including congenital heart disease. We found that Gpc3-deficient mice display a high incidence of congenital cardiac malformations like ventricular septal defects, common atrioventricular canal and double outlet right ventricle. In addition we observed coronary artery fistulas, which have not been previously reported in SGBS. Coronary artery fistulas are noteworthy because little is known about the molecular basis of this abnormality. Formation of the coronary vascular plexus in Gpc3-deficient embryos was delayed compared to wild-type, and consistent with GPC3 functioning as a co-receptor for fibroblast growth factor-9 (FGF9), we found a reduction in Sonic Hedgehog (Shh) mRNA expression and signaling in embryonic mutant hearts. Interestingly, we found an asymmetric reduction in SHH signaling in cardiac myocytes, as compared with perivascular cells, resulting in excessive coronary artery formation in the Gpc3-deficient animals. We hypothesize that the excessive development of coronary arteries over veins enables the formation of coronary artery fistulas. This work has broad significance to understanding the genetic basis of coronary development and potentially to molecular mechanisms relevant to revascularization following ischemic injury to the heart.  相似文献   
27.
Spirogyra insignis shows a long-term persistence of cell division synchrony in the absence of the synchronizing Zeitgeber, so that at least six generations are involved in the process. This tentatively suggests that a mechanism of transmission throughout generations of synchronizing information could maintain this synchrony. Apparently, a vital part of the molecular basis of this mechanism is a membrane proteoglycan complex. This complex could obtain temporal information from a synchronizing Zeitgeber and be transmitted to the progeny by distribution of plasma membrane between daughter cells.  相似文献   
28.
Human mesenchymal stem cells (hMSCs) are an attractive tissue engineering avenue for the repair and regeneration of bone. In this study we detail the in vivo performance of a novel electrospun polycaprolactone scaffold incorporating the glycosaminoglycan heparan sulfate (HS) as a carrier for hMSC. HS is a multifunctional regulator of many key growth factors expressed endogenously during bone wound repair, and we have found it to be a potent stimulator of proliferation in hMSCs. To assess the potential of the scaffolds to support hMSC function in vivo, hMSCs pre-committed to the osteogenic lineage (human osteoprogenitor cells) were seeded onto the scaffolds and implanted subcutaneously into the dorsum of nude rats. After 6 weeks the scaffolds were retrieved and examined by histological methods. Implanted human cells were identified using a human nuclei-specific antibody. The host response to the implants was characterized by ED1 and ED2 antibody staining for monocytes/macrophages and mature tissue macrophages, respectively. It was found that the survival of the implanted human cells was affected by the host response to the implant regardless of the presence of HS, highlighting the importance of controlling the host response to tissue engineering devices.  相似文献   
29.
Abstract: We have studied developmental changes in the structure and concentration of the hyaluronic acid-binding proteoglycan, neurocan, and of phosphacan, another major chondroitin sulfate proteoglycan of nervous tissue that represents the extracellular domain of a receptor-type protein tyrosine phosphatase. A new monoclonal antibody (designated 1F6), which recognizes an epitope in the N-terminal portion of neurocan, has been used for the isolation of proteolytic processing fragments that occur together with link protein in a complex with hyaluronic acid. Both link protein and two of the neurocan fragments were identified by amino acid sequencing. The N-terminal fragments of neurocan are also recognized by monoclonal antibodies (5C4, 8A4, and 3B1) to epitopes in the G1 and G2 domains of aggrecan and/or in the hyaluronic acid-binding domain of link protein. The presence in brain of these N-terminal fragments is consistent with the developmentally regulated appearance of the C-terminal half of neurocan, which we described previously. We have also used a slot-blot radioimmunoassay to determine the concentrations of neurocan and phosphacan in developing brain. The levels of both proteoglycans increased rapidly during early brain development, but whereas neurocan reached a peak at approximately postnatal day 4 and then declined to below embryonic levels in adult brain, the concentration of phosphacan remained essentially unchanged after postnatal day 12. Keratan sulfate on phosphacan-KS (a glycoform that contains both chondroitin sulfate and keratan sulfate chains) was not detectable until just before birth, and its peak concentration (at 3 weeks postnatal) was reached ~1 week later than that of the phosphacan core protein. Immunocytochemical studies using monoclonal antibodies to keratan sulfate (3H1 and 5D4) together with specific glycosidases (endo-β-galactosidase, keratanase, and keratanase II) also showed that with the exception of some very localized areas, keratan sulfate is generally not present in the embryonic rat CNS.  相似文献   
30.
The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号